اندازه‌گیری میزان انقباض پلیمریزاسیون خطی در کامپوزیت‌های ایرانی ایده آل (IDM) الیت کیور

دکتر میثم فرام* - دکتر ظاهره جهرمی‌زاده** - دکتر پریانی علیزاده اسکوئی***

استادیار گروه آموزشی ترمیمی دانشگاه دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران

** استادیار گروه آموزشی مواد دندانی دانشگاه دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران

*** دستیار گروه آموزشی ترمیمی دانشگاه دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران

Title: Measurement of linear polymerization shrinkage in light cure Ideal Makoo composite resin.
Authors: Ghavam M. Assistant Professor*, Jafarzadeh T. Assistant Professor**, Alizadeh Oskouei P. Resident*
Address: * Dept. of Operative Dentistry. Faculty of Dentistry. Tehran University of Medical Sciences
** Dept. of Dental Material. Faculty of Dentistry. Tehran University of Medical Sciences
Abstract: Polymerization shrinkage of light cure composite resins causes many complications in conservative and esthetic restorations. The objective of this in-vitro study was to evaluate the polymerization shrinkage, degree of conversion and the amount of filler in IDM and tetric ceram composites. Ten disk shaped, uncurved specimens (8mm x 1.547mm) of each composite were placed on a glass slide in the center of the metal attached to it. Then specimens were light cured for 60s from underneath. After 30 minutes, the thickness of specimens, using a micrometer and the percent of the polymerization shrinkage of each sample were measured. Statistical analysis was carried out by t-test (P<0.05). Also the degree of conversion of specimens was evaluated with FTIR and the mineral filler content was measured by burning in electric oven. Polymerization shrinkage in IDM and tetric ceram was not significantly different. Degree of conversion and mineral filler content in tetric ceram was greater than that of IDM.
It is assumed that the low degree of conversion in IDM is due to its chemical composition and filler content. Also, the similarity in linear polymerization shrinkage between IDM and tetric ceram may be caused by the low degree of conversion in IDM.

Key words: Polymerization shrinkage- Degree of conversion- FTIR

Journal of Dentistry. Tehran University of Medical Sciences (Vol. 14, No. 3, 2001)

چکیده
منشأ انقباض پلیمریزاسیون کامپوزیت رزین‌ها منجر به برآزوی مشکلاتی در ترمیم‌های زیبایی و محافظه‌کاری‌های شده است. در این مطالعه متوسط درصد انقباض بلیم‌پر داشته شده و در کمپوزیت‌های الیت کیور ID (in-vitro) منجر به انقباض مورد بررسی قرار گرفت. همچنین به طور همزمان، درجه تبدیل و درصد فیبر و مقدار دانه دانه‌ی کامپوزیت از انتزاع گرفته شد. تعداد دانه‌های به شکل سبز به ابعاد 1.547 میلی‌متر از هر کامپوزیت روی لام میکروسکوپ و در مرکز رنگی فلزی متمایل به ان تهیه شد. تیبووهای از قسمت تحتانی لام به مدت 60 ثانیه تحت ناگر مورد پردازش و بعد از 3 دقیقه تغییرات ضخامت نمونه‌ها با میکروسکوپ 20× Helios انتزاع گیری و درصد انقباض خطر هر نمونه محاسبه شد. جهت بررسی نتایج از روش t-test یک جریان مسنجکی به بهره‌مندی شده است.
استفاده شد (۵/۰۰٪)؛ در عین حال متوسط درجه تبدیل نمونه‌ها با FTIR و محتوای فیلر معدنی به وسیله سوزاندن در کوره الکتریکی اندوزه‌گیری شد. نتایج نشان داد که پهن دارد انقباض خیلی دوم نمونه کامپوزیت تفاوت معنی‌داری وجود ندارد و درجه تبدیل و محتوای فیلر معدنی در تریکسرم به‌طور متوسط بدین‌گونه است. به نظر می‌رسد درجه تبدیل یا محتوای فیلر در برابر انقباض کامپوزیت‌ها به ترتیب تیمیسایی و محتوای فیلر ان مربوط باشد و تنش‌های انقباض خیلی کامپوزیت‌های ۱۵۰ میلی‌متری از درجه تبدیل یا محتوای فیلر به‌طور همزمان با انقباض کامپوزیت‌ها به ترتیب تیمیسایی و محتوای فیلر

کلید واژه‌ها: انقباض پلیمر-پرازیون-درجه تبدیل-FTIR

مقدمه

کامپوزیت رزین‌ها در حین سخت‌شدن با مشکل انقباض پلیمر-پرازیون موثر می‌توانند مواد درمانی داشته باشند. با وجود تلاش و سبب در جهت حذف یا کاهش این بیماری هنوز هم باعث در کاربرد کامپوزیت‌ها مطرح می‌شود. انقباض پلیمرپرازیون یک گم‌میت بوداری و بی‌پیش‌بین است به زمان است و در دو مرحله صورت می‌گیرد:

1. Post - gelation
2. Pre - gelation

در مرحله اول اتفاق می‌افتد و از این طریق عمده تشکیل شده ناشی از انقباض برطرف یا، به دلیل افزایش گریز G1 منظور می‌شود. اما بعد از یا به ماه، استرس انقباض افزایش می‌یابد که این امر از نظر کامپوزیت حائز اهمیت است (۱۳). از عوامل موثر بر با انقباض پلیمرپرازیون می‌توان به درجه تبدیل و نرم‌ساز در نظر گرفته‌کرد (۱۴).

در این مطالعه کامپوزیتها لایت کرور TCD و TCD مورد استفاده قرار گرفتند. محصول TCD شرکت ایتالیا ماکاو می‌باشد و طبق ادعای کارخانه دارای Bi-GMA و (امکان کمپیو اسید مالائیت) و TCD و

UDMA و است. TCD سه محصول شرکت Vivadent می‌باشد UDMA و TCD و نظیر UDMA و TCD دارای Bi-GMA و (امکان کمپیو اسید مالائیت) و TCD و

فیلر میکروهپرید است. لازم به ذکر است که موارد اولیه از شرکت ارائه تهیه می‌شود و عملیات اختلاف و بسیب بر انتخاب انقباض را گیرد.

در این مطالعه، در جدیدیه اول اتفاق می‌افتد و به دلیل افزایش گریز G1 منظور می‌شود. اما بعد از کامپوزیت در نظر گرفته‌کرد (۱۴).
به منظور انتقادگیری انقباض پلیمرزاسیون خطي از ماده خمیری هر کامیویت ده نمونه به شکل دیسک و به ابعاد 16/8/1 میلیمتر تهیه شد. این نمونه‌ها در مرکز رینگ فلزی با سطح منفعت مربعی به قطر داخلی 16 و ارتفاع 16/8 میلیمتر که روی آن میکروسکوب (تصویر شماره 1) بود. قرار گرفتن فلزی به شکل دیسک کامپوزیت در تجهت بررسی درجه تبدیل مواد به روش FTIR مورد بررسی قرار گرفت (عکس اضافی).

طیف سنجی مادون قرمز (FTIR) و از نمونه‌ها طیف IR تهیه شد. به این ترتیب که از خمیر کامپوزیت‌های پلیمرزه نشده یا دیسک‌های پلیمرزه شده و با پوسته اسپرمیه‌هایی به ضخامت 50 میکرون تهیه شد و به کمک دستگاه پیکیه‌های جذب قبل از سخت شدن گرفته شد. از Transmission Mode کامپوزیت در دیسک‌های پلیمرزه شده در مرحله اول مطالعه هم بلاافتکی بعد از اندازه‌گیری تغییرات ابعاد محوری سه دیسک به صورت تصادفی انتخاب و در هاوان جنس به صورت یک گروه در آرازده شدند. 50 میکروگرم از خمیر و 50 برای گریم پوسته اسپرمیه‌ای مخلوط و سپس به صورت دیسک تهیه شد و ازآن پیک جذب در Diffusion Reflection Mode مقادیر انگریزی به دست آمده متوسط درجه تبدیل هر کامپوزیت از نسبت چربی (بر: peak: 1638 cm⁻¹) / (بر: peak: 1608 cm⁻¹) C- C بر اساس فرمول زیر محاسبه می‌شود:

\[\text{DC} = \frac{(\text{C} = \text{C}) - (\text{C} = \text{C})}{(\text{C} = \text{C})} \]

در مرحله بعد جهت بررسی محوریت فیلار، از روش کشیده از خمیر کامپوزیت در کوره الکتریکی استفاده شد. از هر گروه 3 نمونه 4 نمونه از هر گروه دیسک کامپوزیت در تجهت بررسی درجه تبدیل مواد به روش FTIR مورد بررسی قرار گرفت (عکس اضافی).
مورد تنریک سرام با مطالعه Internal Derangement دارد. در طی این تحقیق میزان این انقباضات در افراد دارای سرطان مطرح شده است (9).

درجه تندبیل کامپوزیت‌ها به وسیله FTIR که جزو حساسیت نکننده می‌باشد، مورد بررسی قرار گرفته است (10). طبق نتایج جدول شماره ۳ می‌توان یک داشت که مقدار باندهای دوگانه باقیمانده در پیشر از تنریک سرام است.

بر اساس مطالعه رژیس و همکاران میزان باقیمانده Bis-GMA در دوگانه باقیمانده در پیشر از تنریک سرام مربوط به نتیجه‌های مثبت است (11).

با توجه به جدول شماره ۱ محتوای برای تنریک سرام است (12/76/2 در برای IDM نشان داده شده است که میزان این انقباضات در کل ماده درجه تندبیل را کاهش می‌دهد. از طرف دیگر در TEG-DMC از یک دیول دی‌متکریلات به عنوان رهیافتی کننده استفاده شده است. این ماده یک هوموپولیمر است که بسته به تعداد گروه‌های متین در آن، میزان انقباضات را کاهش می‌دهد. از طرف دیگر وزن مولکول بالای این ماده هم عاملی دیگر در درجه تندبیل باشند می‌باشد (12).

در مطالعه حاضر انقباضات پلیمر‌بندی قطعی به عنوان فاکتور مهم در ارزیابی عملکرد کلینیکی دو ماده همیله دارای درمان ترمیک سرام بررسی قرار گرفته است. از آن جمله مطالعه‌هایی که در این مقاله به طور کامل مطرح شده است. در این مطالعه از نظر میزان انقباضات قطعی تفاوت معنی‌داری نشان داده شده است که در میزان انقباضات، ترمیک سرام به طور معنی‌داری به نسبت دو ماده کامپوزیت حرکت قطعی کاملی نمی‌کند. در این مطالعه از نظر میزان انقباضات قطعی تفاوت معنی‌داری نشان داده شده است که در میزان انقباضات، ترمیک سرام به طور معنی‌داری به نسبت دو ماده کامپوزیت حرکت قطعی کاملی نمی‌کند.
مواد مورد بهره‌برداری ترین در تری‌گرام است (67/5 در برآورد 77/5٪). همان‌طور افزایش‌یافته‌ای که به‌طور کننده فیلتر خودکی و کنترل کننده افت‌پایه پلی‌پروپیلین است.

جدول شماره 1- ترکیب و مقدار موجود در کامپوزیت‌های IDM و تری‌گرام سرام

<table>
<thead>
<tr>
<th>ایده‌آل ماکو</th>
<th>ترکیب (گرم)</th>
<th>درصد وزنی (گرم)</th>
<th>ترکیب (گرم)</th>
<th>درصد وزنی (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/83</td>
<td>Bis-GMA</td>
<td>83/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/46</td>
<td>اورتان دی‌مارکرات</td>
<td>46/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/22</td>
<td>تستنت، کالسیت</td>
<td>22/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/02</td>
<td>Ytterbium trifluoride</td>
<td>02/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/17</td>
<td>دی‌مارکرات دکنسول</td>
<td>17/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/75</td>
<td>سیلیکا</td>
<td>75/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/57</td>
<td>سیلات و سیلات</td>
<td>57/0 Ba-Al-Fluorosilicate-glass, silanized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/24</td>
<td>2/1</td>
<td>رنگ‌دانه‌ای کسید آهن</td>
<td>2/1</td>
<td></td>
</tr>
<tr>
<td>1/01</td>
<td>0/05</td>
<td>Additives</td>
<td>0/05</td>
<td></td>
</tr>
</tbody>
</table>

جدول شماره 2- تغییرات ضخامت و درصد انقباض خلیفه نمونه‌های کامپوزیت IDM و تری‌گرام سرام (TC)

<table>
<thead>
<tr>
<th>TC</th>
<th>IDM</th>
<th>TC</th>
<th>IDM</th>
<th>TC</th>
<th>IDM</th>
<th>TC</th>
<th>IDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/02</td>
<td>1/46</td>
<td>1/4</td>
<td>1/6</td>
<td>1/4</td>
<td>1/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/01</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1/6</td>
<td>1/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/10</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/23</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/11</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/14</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/7</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/12</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/11</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/12</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

طول و تغییرات مربوطه محل کامپوزیت در سرنگ

- انتهای سرنگ
- سیلیکا سرنگ
- سیلات و سیلات
جدول شماره ۲- درجه تبدیل و درصد فیلر معدنی در دو نوع کامپوزیت (TC) و تتریک سرام (IDM) و تتریک سرام

<table>
<thead>
<tr>
<th>کامپوزیت</th>
<th>درجه تبدیل</th>
<th>درصد فیلر معدنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>٠٩٥٥</td>
<td>٦٤٪</td>
</tr>
<tr>
<td>IDM</td>
<td>٦٤٪</td>
<td>٦٤٪</td>
</tr>
</tbody>
</table>

لازم به ذکر است که در این مطالعه به دلیل عدم دسترسی به LVDT Transducer و میکرومر دیجیتال ناگزیر از استفاده از میکرومر معمولی برای بررسی انقباض محوری شدید، عملاً همگی، در جهت دقیقتر عمل کردن احتمال خطا وجود دارد و جهت اطمینان بیشتر مطالعات با وسایل بهتری و دقت‌تر از آنها است.

نتیجه‌گیری

میزان انقباض بیلیمپاسیون خلی در ۳ دقیقه اول بعد از تابی نور در کامپوزیت (TC) و تتریک سرام تفاوت

منابع: