ترمیم حفره استخوانی ایجادشده در استخوان باربیتال خرگوش (Neo-Os) به وسیله پودر جایگزین استخوان (Ya) و بدون محافظه

دکتر شهرام نامی‌جوی نیک
دکتر رضا لطفی

* استادیار گروه آموزشی جراحی دهان، نک و صورت دانشگاه، دندانپزشکی، دانشگاه شاهد

دندانپزشک

Title: Influence of the Neo-Os® bone substitute powder on calvarial bone healing with and without membrane

Authors: Namjooy Nik Sh, Assistant Professor*, Lotfi R. Dentist

Address: * Dept. of Oral and Maxillofacial Surgery, Faculty of Dentistry, Shahed University

Abstract: Nowadays, different materials have been used for regeneration of interosseous defects and Neo-Os is one of them. The objective of this study was to evaluate histologically the influence of Neo-Os® particles on bone regeneration using rabbit calvaria defects with and without protection of Gore-Tex® barrier membrane. A cutaneous periosteal incision and flap was made on the forehead of 12 rabbits exposing the top of the skull. A standardized trans-osseous skull defect (8 mm diameter) was made in each of the parietal bone with rotating round bur. In half of the rabbits, one defect was filled with the Neo-Os® particles without any type of the barrier membrane. The other defect was left empty. In the other half of the rabbits, one defect was filled with Neo-Os® and two flat expanded polytetrafluoroethylene (Gore-tex®) membranes. For the other defect, only the Gore-tex membrane protected the defect. After 8 and 16 weeks, the specimens were processed using standard, decalcified, hard tissue histology techniques. Rabbit calvarias defects treated with Neo-Os® particles and polytetrafluoroethylene (Gore-tex®) membrane, healed by in growth of woven bone from the defect margins and by formation of bony islands within the defect area. Finally, the defects were treated with woven and lamellar bone.

Key words: Neo-Os; Bone substitute powder; Bone

Journal of Dentistry, Tehran University of Medical Sciences (Vol. 15, No. 3, 2002)

چکیده

امروزه از مواد مختلفی جهت ترمیم حفره‌های داخل استخوان استفاده می‌شود. پودر جایگزین استخوان (Neo-Os) یکی از موادی است که به طور توربوکسی می‌تواند سبب چنین ترمیم شود. این تحقیق با هدف ارزیابی تأثیر این ماده در ترمیم استخوان حفره‌های تیپی تبدیل می‌گردد. در این تحقیق، 12 حفره خرگوش تیپ بند سفید انتخاب و در استخوان ایجاده هر یک دو حفره استخوانی نمی‌گردند. بر روی هر 12 حفره، یک برش درموبرویسیال بر روی ناحیه جرم‌گونه خرگوش ایجاد نمود تا با پنل‌نگار فلزی استخوان باربیتال مشاهده گردد. یک حفره در هر استخوان باربیتال به قطر 8 میلی‌متر با فرز گرد به ترتیب زنبورهای خرگوش، در نیمی از خرگوش‌ها در یک حفره پودر جایگزین استخوان فرار داده شد و حفره دیگر خالی رها شد و در نیم دیگر
خرگوشها، یک حفره بر روی جایگزین اشعه، کورنک، و ورودی دیگر فقط کورنک قرار داده شد. پس از 8 و 16 هفته، نمونه‌ها با روشهای استاندارد دکلسیفیکاسیون شدند و شیب‌های بلافاصله پس از تهیه‌گرده در استخوان‌های خرس تهیه شدند و سپس این استخوان‌ها برای تعیین مقادیر نمونه در دسترس قرار گرفتند. با استفاده از این میانی، ترکیب به استفاده از موارد سطحی فیزیکی و جاذبه توزیع شد. با تغییر در دهای موارد، روش‌های کلی و روش‌های جدید، همه به استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان مجدداً در نواحی استخوان‌های خرس تهیه‌گرده، با استفاده از این روش‌ها، نمی‌تواند. محققان M. Dahlin ناSHOW در تحقیق خود از جمعه موش صحرایی جهت بررسی توانایی میسران در هدایت ترمیم استخوان در حفره‌های استخوانی استفاده کرد (1). در این مطالعه، ۱۲ حفره ماری در داخل خرس تهیه شدند. این حفره‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این نمونه‌ها با روشهای استاندارد تهیه شدند. پس از تهیه‌گرده، نمونه‌ها در دسترس قرار گرفتند. این NMRD ارائه داده است. که این ورود شایع ۷۹٪ بیماران کلیسی از نوع آراگوانتی و میزان مثبت است. است. مطالعات به همراه Microscopy نشان داده که دارای این پرور به صورت غیر است. است. مطالعات به همراه Microscopy نشان داده که دارای این پرور به صورت غیر است. است.
باقته‌ها

در مجموع 24 حفره در 12 خرگوش مورد بررسی قرار گرفت که نتایج آن به شرح زیر است:

در نمونه‌های کنترل مربوط به گروه اول تمام حفره با بایت فیبروز و جریه پر (تصویر ۲) بدون Neo-Os در نمونه‌های درمان این گروه از استفاده از غشا محیاط استفاده شد.

پس از ۸ هفته، کلاس بانفوذ در درون حفره استخوانی به طور نسبی بین ۱/۳ تا ۱/۴ از کل قطر آن مشاهده شد. ذرات Haemopetic Space نریزه همیشه با میزان بانفوذ کافی بود که شامل سلول‌های تهیه‌کننده بود، اما واکنش انتهای حیفی بود. ذرات باقی‌مانده با استخوان ارتباط مستقیم دارد و عملیت استحباب‌سازی در اطراف استخوان مشاهده شد. استخوان تشکیل شده، از نوع نیله‌ای و درهم بود در این گروه بیشتر ذرات Haemopetic Space نریزه همیشه با میزان بانفوذ کافی بود و اطراف آن واکنش‌های استخوان‌سازی دیده شد و استحباب‌سازی فعال مشاهده گردید.

پس از ۱۶ هفته، کلاس بانفوذ در درون حفره استخوانی به طور نسبی بین ۱/۲ تا ۱/۳ از کل قطر آن مشاهده شد. سلول‌های خفیف شده، از نوع نیله‌ای و درهم بود. مشاهده Haemopetic Space در درون حفره استخوانی مشاهده شد. بیشتر ذرات Haemopetic Space در فضای سرخه‌ای جریه و عروق خویش مشاهده شد.

(تصویر ۳)

در نمونه‌های کنترل خرگوش دوم، هر دو فاصله زمانی، کلاس بانفوذ شد، درون حفره استخوانی مشاهده گردید که در فاصله زمانی ۸ هفته عروق Endocranial و Ectocranial سطح استفاده شد.

در نمونه‌های به روش Neo-Os در رنگ آماده و برش، Haematoxyline & Eosine و Trichrome وجود مطالعه و بررسی قرار گرفت (تصویر ۱)

Endocranial

و

Ectocranial

تصویر ۱- نمای شماتیک بررسی نمونه‌ها
خونی و یافته اسکافولد مشاهده شد و در فواصل ۱۶ هفته فقط در ناحیه اندوکاتالیپس از لبه‌های خونی یافته اسکافولد تشكیل شده بود. در نمونه‌های دو مورد از کروه، گورتکس در دو طرف جنبه قرار داده شد. پس از ۸ هفته در یک مورد، در سطح خارجی اکتوبیولار به طور محدود جایی استخوانی دیده شد. در سطح داخلی گورتکس (اکتوبیولار) تعادل مستقیم با استخوان درهم عروق خونی و نسج اسکافولد داشت. در داخل و بین لایه‌های گورتکس مارکوفاژ و تعادل سولونی در میان و یک سطح داخلی گورتکس در تعادل مستقیم با استخوان درهم عروق خونی و نسج اسکافولد بود. در داخل جنبه ذرات Neo-Os به طور کامل جذب و مراقبات در اطراف آن فعالیت بیسیار Neo-Os زیادی داشتند. در اطراف ذرات سولونی مارکوفاژ و نسج اسکافولد مشاهده شد. کل حفره استخوانی از تریکولهای مطیع و در هم (که اکثریت درهم یافته) در نمونه‌ها مشاهده شد. نسج اسکافولد تشكیل شده بود (تصویر ۶).

پس از ۶۴ هفته، فضای حفره استخوانی کلاپس نکرد. بود سطح خارجی گورتکس در تعادل مستقیم با بات در استخر. سطح داخلی آن در تعادل مستقیم با استخوان درهم و عروق خونی و نسج اسکافولد بود. در مخلوط با سولونی Haemopoetic Space سولونی مارکوفاژ و مونوسیت دیده شد. تعادل اندکی ذرات باقیمانده از پودر مشاهده گردید که با استخوان تعادل مستقیم داشتند. استخوان‌ها تشكیل شده مخلوطی از استخوان مطیع و درهم بود که در آن باسازی استخوان مشاهده بود (تصویرهای ۶، ۷ و ۸).
در تصویر ۷، جزییات حس‌کشی استخوان‌بندی در اینجا مشاهده می‌شود که در سطح اکتوکالسیت بال‌کننده سطح داخلی گردنبند باقی‌مانده بود.

عکس

گزینه خاصی گردنبند در نمودارین به‌طور مشابه و سطح داخلی آن در نمودارین با استخوان درهم و طرف خونی است. سطح داخلی گردنبند با انتخاب گردنبند به دست آمده می‌گردد که در نمودارین با استخوان‌بندی

تصویر ۵: با غشا گردنبند، ۸ هفته، پزشک‌گاهی ۵۰ برابر، رنگ‌آمیزی تری کریم منسون

سلح خارجی گردنبند در نمودارین به‌طور مشابه و سطح داخلی آن در نمودارین با استخوان درهم و طرف خونی است. سطح داخلی گردنبند با انتخاب گردنبند به دست آمده می‌گردد که در نمودارین با استخوان‌بندی

تصویر ۶: با غشا گردنبند، ۸ هفته، پزشک‌گاهی ۵۰ برابر، رنگ‌آمیزی همامتگوکسین - آنتونین Neo-Os

روش بافت استخوان‌بندی به دهان سطح (ماده شناه عمل) Neo-Os

تصویر ۷: با غشا گردنبند، ۸ هفته، پزشک‌گاهی ۵۰ برابر، رنگ‌آمیزی همامتگوکسین - آنتونین Neo-Os

روش بafort استخوان‌بندی به دهان سطح (ماده شناه عمل) Neo-Os
نتیجه گیری

بر اساس تحقیق حاضر، مطالعه‌ای عملاً اساسی در ترمیم کامل جریان استخوانی در می‌باشد. ماده جایگزین استخوان Neo-Os با استخوان سازگاری جایی دارد و می‌تواند به عنوان ماده جایگزین استخوان مورد استفاده قرار گیرد.

 تشکربندی و قدردانی

این مطالعه در قالب یک طرح تحقیقاتی و با حمایت مالي دانشگاه شاهد به انجام رسیسه است که بهبود و تشرک و قدردانی می‌گردد.

منابع:

