Title: A radiographic evaluation of progressive loading on crestal and bone density changes around single osseointegrated implants in the posterior maxilla

Authors: Siadat H. Associate Professor*, Ghoveizi R. Assistant Professor**, Mirfazaelian A. Assistant Professor*, Ommati Shabestari Gh. Assistant Professor*, Alikhasi M. Assistant Professor*

Address: *Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences
** Department of Prosthodontics, School of Dentistry, Hamedan University of Medical Sciences

Background and Aim: The aim of this clinical study was to determine the effectiveness of progressive loading procedures on preserving crestal bone height and improving peri-implant bone density around maxillary implants restored with single crowns by an accurate longitudinal radiographic assessment technique.

Materials and Methods: Eleven Micro-Thread Osseo Speed dental implants were placed in 11 subjects and permitted to heal for 6 weeks before surgical uncovering. Following an 8-week healing period, implants underwent a progressive loading protocol by increasing the height of the occlusal table in increments from adding acrylic resin to an acrylic crown. The progressively loaded crowns were placed in 2 mm infraocclusion for the first 2 months, light occlusion for the second 2 months, and full occlusion for the third 2 months. At forth 2 months, a metal ceramic crown replaced the acrylic crown. Digital radiographs of each implant were made at the time of restoration, then after 2, 4, 6, 8, and 12 months of function. Digital image analysis was done to measure changes in crestal bone height and peri-implant bone density.

Results: The mean values of crestal bone loss at 12 months were 0.11 ± 0.19 mm, and when tested with Friedman across the time periods, the differences were not statistically significant (p> 0.05). The mean values of bone density in the crestal, middle, and apical area were tested with Repeated Measure ANOVA across the time periods, the differences were statistically significant (p<0.05).

Conclusion: Progressive loading doesn’t cause crestal bone loss. The peri-implant density measurements of the progressively loaded implants show continuous increase in crestal, middle and apical peri-implant bone density by time.

Key Words: Conventional Loading; Progressive Loading; Radiographic Assessment
مقدمه
استخوان کرستال اطراف ایمپلنت، در طی سال‌های اول فاکسشن به طور متوسط 9 تا 16 میلی‌متر تخلیه می‌شود و در کنترل‌های بعدی، میزان تخلیه متوسط سالانه به تا 0/12 میلی‌متر کاهش می‌یابد. اما تخلیه استخوان اطراف ایمپلنت سپ از یک دوره فاکسشن می‌تواند به دو دسته: Functional و Non functional تقسیم شود. دریافت شده از پات در مقایسه با درد همبسته در ارتباط با استخوان اطراف ایمپلنت، اضافه به یک دسته ایمپلنت می‌باشد. 20/1

کلیه واژه‌ها: پات (درمان)، ایمپلنت

طول: 16

عکاسی نهایی: 1/4/88010

Importance of Mucosal Healing and Healing Time on the Success of Implant Crowns.

Non loading

Non functional

Immediate

Delayed

Differed

Classical

Immediate

Early

Conventional

Immediate

Early

Conventional

Friedman

Repeated Measure ANOVA

Aparicio

Quinlan

Cols

Aparicio

SLA ITI

Non loading

Non functional

Functional

Non loading

Non functional

Functional

P. 103
روی ایمپلنت و با ایجاد ناماس بنان های مقابل قرار داده می‌شود.
2- در روش بارگذاری نوری، بیمار نهایی روز جراحی یا 7 تا 10 روز بعد از انجام هندگاه (برایش نرم‌بند) قرار داده می‌شود.
3- در روش بارگذاری تدریجی ارتقاء سطح اکثرالوئال به تدریج افزایش می‌یابد. تا به مناسبت کامل بنان مقابل پرست.

پیش‌بینی بارگذاری تدريجی (Gradual loading) توسط Carl E Misch (8) با استفاده از اطلاعات تجربی برای اینکه بارگذاری تدريجی اجرا به‌علوم افزاوکرمال و به‌وهی کنیست استخوان و کاهش تحلیل استخوان را در دهه پایین‌گذاری گذرانه افزایش تراکم برای بارگذاری استخوان است و باعث ایجاد تہانه نیروی به‌رنگ و Appleton و موفقیت درمان‌های برودزی ایمپلنت را جهت پژوهش می‌باشند.

همکاران (9) تغییرات استخوان اطراف ایمپلنت را در پایین به بارگذاری تدريجی، ارزیابی نُگَری، نتایج زدهش این مطالعه اولیه کاملاً تحلیل استخوان در ایمپلنت‌های با بارگذاری تدريجی را نشان داد.

Appleton و همکاران (10) تحقیق‌بندی به منظور اثر Progressive loading در میزان ارتقا و دانسته استخوان اطراف ایمپلنت در ناحیه خلیل‌گیر و مکرر بارگذاری برای روی ایمپلنت نشان دادند. در گروه دوباره بعد از ترمیم، یک روش سنگ الگا را ایمپلنت مصرف دادند و در گروه مورد آنها تحت پروکسی قرار دادند. با استفاده از یک روش استاندارد Progressive loading را تحریک و اتانول‌های نرسی‌بند به‌وسیله ایمپلنت ارتقا و دانسته استخوان، مشاهده کرد که میزان bone loss بین ایمپلنت‌های Conventional loading بیشتر از BArگذاری Progressive loading از اثربخشی معمول است. در اطراف ایمپلنت و در Progressive Loading (Micro Thread-Osseo Speed Sweden Molndal) به‌وسیله ایمپلنت بیشتر (Conventional loading) در ناحیه ایکس ایمپلنت باشد.

هدف از این مطالعه کلینیکی بررسی تأثیر بارگذاری تدريجی بروری ارتقاد استخوان کستی کم و تراکم استخوان اطراف ایمپلنت‌های مکرر، توسط تکنیک رادیوگرافی می‌باشد.

روش بررسی تحقیق حاضر یک مطالعه longitudinal می‌باشد. بیماران از بین (Macro Thread-Osseo Speed Sweden Molndal)
یک کلمه مهم و کامل در این مقاله توصیه و استفاده می‌شود.


1. مقدمه

در این پژوهش، بررسی ارتباط بین بیماری‌های اوراسیال و سونیت برای اولین بار انجام گردید. در این مطالعه، با استفاده از‌بیمارگزاری‌های آزمایشگاهی، ارتباط بین بیماری‌های اوراسیال و سونیت در بیمارانی که دچار بیماری‌های اوراسیال بوده‌اند، بررسی گردید. نتایج نشان داد که بیماری‌های اوراسیال باعث افزایش احتمال بروز بیماری‌های سونیت می‌شود.

2. مطالعه اصلی

در این بخش، نتایج آزمون‌های آزمایشگاهی که برای بررسی ارتباط بین بیماری‌های اوراسیال و سونیت انجام گردید، آورده می‌شود.

3. نتیجه‌گیری

نتایج این مطالعه نشان داد که بیماری‌های اوراسیال باعث افزایش احتمال بروز بیماری‌های سونیت می‌شود و برای پیشگیری از این بیماری‌ها، به‌کارگیری روشهای مناسب برای پیشگیری از بیماری‌های اوراسیال و سونیت ضروری است.

کلیدواژه‌ها: بیماری‌های اوراسیال، بیماری‌های سونیت، نتایج آزمون‌های آزمایشگاهی.
میزان ارتقاء استخوان در مزیال و دیستال می باشد بدست آمده. چگته یکسایی داده های بدست آمده از تمام تصاویر، فواصل a (شوتر ایمیلنت) تا نقطه e (ایپک ناحیه ایمیلنت) محاسبه گردید و فاصله ab و cd با توجه به فاصله ac و طول واقعی ایمیلنت که 11 میلی‌متر می‌باشد، چگه حذف بزرگ‌ترین احتمالی تصحیح (Normalize) گردید.

(C,F) دیستال
(D,E) ایپک

- ایپک ناحیه ایمیلنت در مزیال و دیستال (Reference)
- 5- نهایی و آخرين ناحیه به عنوان مرکز اندازه‌گیری بر روی خود ته ایمیلنت در فاصله 1 میلی‌متری شوهرت (که در دیستال ایمیلنت گردید). این مربع از نظر میزان تراکم در X-Ray تمامی یکسان می‌باشد.

شکل 3- نواحی مورد نظر جهت ارزیابی تراکم استخوان

اعداد بدست آمده از 8 ناحیه اطراف ایمیلنت به کمک ناحیه مرکز، یکسایی متقابل تصاویر (Normalized) شدند تا مقایسه تصاویر را بی‌بامی با هم و مقایسه تصاویر مختلف بیماران با هم امکان‌پذیر گردید. جهت مقایسه Repeated Measure تراکم استخوان در زمان‌های مختلف از آزمون تراکم استخوان در زمان‌های مختلف از آزمون تراکم استخوان در زمان‌های مختلف از آزمون Crestal Bone Loss در مورد همکنونه ANOVA در مورد همکنونه ANOVA در مورد همکنونه ANOVA با توجه به عدم تبیین داده‌ها از توزیع تبیین داده‌ها از توزیع نرمال جهت مقایسه زمان‌ها از آزمون Friedman test که عمیقات آماری با استفاده از نرم‌افزار SPSS و با درنظر گرفتن خطای نوع اول امکان برای 0/05 انجام شد.

شکل 2- مختصات نقاط مورد استفاده جهت ارزیابی ارتقاء استخوان

میزان تحلیل استخوان کرستال (crestal bone loss) در مزیال و دیستال ایمیلنت‌ها در مراحل (A,H,b,C,E) 12 ماه بعد از جراحی محاسبه گردید.

برای ارزیابی تغییرات تراکم استخوان، مربع هر با ابعاد 1 mm² فواصل 5/0 میلی‌متر دورتر از سطح ایمیلنت برای گروهی از تاثیر آلایه ایمیلنت در محاسبه تراکم استخوان، در 9 ناحیه تبیین گردید (شکل 3). با توجه به اینکه سطح ایمیلنت از نظر ایپک (Astra) و Micro thread در نیمه اکلوزال و Macro thread در نیمه ایپک با توجه به شکل 3 تعداد استرتیژ 9 ناحیه به این ترتیب مشخص شدند:

- ایپک لوله ای ناحیه تکمیل استخوان به ایمیلنت در مزیال و (A,H) دیستال
- 1- ایپک اولین روری (11 ایمیلنت) و 4 شرایط انجام شد. به دلیل بوداری یکی از ایپک‌ها و عدم همبودی در ۶ ماه اخیر این مطالعه،

یافته‌ها

این مطالعه بر روی 11 ایمیلنت (11 ایمیلنت) و 4 شرایط انجام شد. به همراه داده‌های این مطالعه،

- 2- نسبت ناحیه (B,G) از مزیال و دیستال در Micro thread و Macro thread در مزیال و
بیان آماری بر روی داده‌های بدست‌آمده از ۱۰ بهم‌اندازه‌گیری (۱۰ ایمپلنت) نمی‌باشد.

بررسی رادیوگرافیک اثر بارگذاری تدراپی بر روی تغییرات استخوان کرستال و تراکم استخوان اطراف...

به‌منظور بررسی رادیوگرافی‌های بارگذاری تدراپی بر روی تغییرات کرستال و دانه‌ای استخوان، ایمپلنت‌های تک و دویی در ناحیه خفیف ماسکیت قرار داده شد. ناحیه خفیف ماسکیت به این دلیل انتخاب شد که ضعف‌ترین کیفیت استخوان را در ماسکیت و مانند دارا می‌باشد (۱۰) و در صورتیکه بارگذاری تدراپی قادر به ایجاد تغییر در کیفیت استخوان باشد می‌توان اثرات سودمندی برای ناحیه خفیف ماسکیت داشته باشد.

توجه داشته باشید که تراکم استخوان اطراف ایمپلنت به سه ناحیه تقسیم شد: ۱- کرستال (میانگین مربی‌های A H, G, B, A), ۲- میانگین مربی‌های (F, C) و ۳- ایپیکال (میانگین مربی‌های E, D).

جدول ۱- میانگین تحلیل عمومی استخوان کرستال

<table>
<thead>
<tr>
<th>زمان پیگیری</th>
<th>زمان استخوان کرستال Mean (mm)</th>
<th>SD (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پس از ۳ ماه</td>
<td>۶۶/۱۷</td>
<td>۶۶/۱۷</td>
</tr>
<tr>
<td>پس از ۴ ماه</td>
<td>۶۶/۲۵</td>
<td>۸۶/۰۸</td>
</tr>
<tr>
<td>پس از ۵ ماه</td>
<td>۶۸/۷۲</td>
<td>۶۹/۱۰</td>
</tr>
<tr>
<td>پس از ۶ ماه</td>
<td>۶۳/۹۲</td>
<td>۶۳/۰۳</td>
</tr>
<tr>
<td>پس از ۷ ماه</td>
<td>۶۶/۲۵</td>
<td>۶۶/۰۶</td>
</tr>
<tr>
<td>پس از ۸ ماه</td>
<td>۷۱/۰۸</td>
<td>۷۱/۲۶</td>
</tr>
<tr>
<td>پس از ۹ ماه</td>
<td>۷۴/۲۷</td>
<td>۷۴/۰۶</td>
</tr>
<tr>
<td>پس از ۱۰ ماه</td>
<td>۷۸/۰۵</td>
<td>۷۸/۰۸</td>
</tr>
</tbody>
</table>

جدول ۲- میانگین تراکم استخوان در سه ناحیه کرستال میانگین ایپیکال اطراف ایمپلنت

<table>
<thead>
<tr>
<th>زمان پیگیری</th>
<th>ناحیه کرستال Mean (mm)</th>
<th>SD</th>
<th>ناحیه میانی ریشه Mean (mm)</th>
<th>SD</th>
<th>ناحیه ایپیکال Mean (mm)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>پس از ۳ ماه</td>
<td>۶۶/۱۷</td>
<td>۶۶/۱۷</td>
<td>۶۶/۱۷</td>
<td>۶۶/۱۷</td>
<td>۶۶/۱۷</td>
<td>۶۶/۱۷</td>
</tr>
<tr>
<td>پس از ۴ ماه</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
</tr>
<tr>
<td>پس از ۵ ماه</td>
<td>۶۸/۷۲</td>
<td>۶۸/۷۲</td>
<td>۶۸/۷۲</td>
<td>۶۸/۷۲</td>
<td>۶۸/۷۲</td>
<td>۶۸/۷۲</td>
</tr>
<tr>
<td>پس از ۶ ماه</td>
<td>۶۳/۹۲</td>
<td>۶۳/۹۲</td>
<td>۶۳/۹۲</td>
<td>۶۳/۹۲</td>
<td>۶۳/۹۲</td>
<td>۶۳/۹۲</td>
</tr>
<tr>
<td>پس از ۷ ماه</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
<td>۶۶/۲۵</td>
</tr>
<tr>
<td>پس از ۸ ماه</td>
<td>۷۱/۰۸</td>
<td>۷۱/۰۸</td>
<td>۷۱/۰۸</td>
<td>۷۱/۰۸</td>
<td>۷۱/۰۸</td>
<td>۷۱/۰۸</td>
</tr>
<tr>
<td>پس از ۹ ماه</td>
<td>۷۴/۲۷</td>
<td>۷۴/۲۷</td>
<td>۷۴/۲۷</td>
<td>۷۴/۲۷</td>
<td>۷۴/۲۷</td>
<td>۷۴/۲۷</td>
</tr>
<tr>
<td>پس از ۱۰ ماه</td>
<td>۷۸/۰۵</td>
<td>۷۸/۰۵</td>
<td>۷۸/۰۵</td>
<td>۷۸/۰۵</td>
<td>۷۸/۰۵</td>
<td>۷۸/۰۵</td>
</tr>
</tbody>
</table>


Astrand

Branemark

Astra Tech

Branemark

Baseline

Lee

Astrand

Astra Tech

Woven

Ban

Aastrand

Mitsias M, Ewing JR, Soltanian-Zadeh H, Bagher-Ebadian H, Zhao Q, Oja-Tebbe N, Patel SC, Chopp M. Predicting Final


8- Misch CE. Gradual load on an implant restoration. Tatum Implant Seminars lecture, St Petersburg, Fla, 1980.


12- Mitsias M, Ewing JR, Soltanian-Zadeh H, Bagher-Ebadian H, Zhao Q, Oja-Tebbe N, Patel SC, Chopp M. Predicting Final


