Title: A radiographic evaluation of progressive loading on crestal and bone density changes around single osseointegrated implants in the posterior maxilla

Authors: Siadat H. Associate Professor*, Ghoveizi R. Assistant Professor**, Mirfazaelian A. Assistant Professor*, Ommati Shabestari Gh. Assistant Professor*, Alikhasi M. Assistant Professor*

Address: *Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences
** Department of Prosthodontics, School of Dentistry, Hamedan University of Medical Sciences

Background and Aim: The aim of this clinical study was to determine the effectiveness of progressive loading procedures on preserving crestal bone height and improving peri-implant bone density around maxillary implants restored with single crowns by an accurate longitudinal radiographic assessment technique.

Materials and Methods: Eleven Micro-Thread Osseo Speed dental implants were placed in 11 subjects and permitted to heal for 6 weeks before surgical uncovering. Following an 8-week healing period, implants underwent a progressive loading protocol by increasing the height of the occlusal table in increments from adding acrylic resin to an acrylic crown. The progressively loaded crowns were placed in 2 mm infraocclusion for the first 2 months, light occlusion for the second 2 months, and full occlusion for the third 2 months. At forth 2 months, a metal ceramic crown replaced the acrylic crown. Digital radiographs of each implant were made at the time of restoration, then after 2, 4, 6, 8, and 12 months of function. Digital image analysis was done to measure changes in crestal bone height and peri-implant bone density.

Results: The mean values of crestal bone loss at 12 months were 0.11 ± 0.19 mm, and when tested with Friedman across the time periods, the differences were not statistically significant (p> 0.05). The mean values of bone density in the crestal, middle, and apical area were tested with Repeated Measure ANOVA across the time periods, the differences were statistically significant (p<0.05).

Conclusion: Progressive loading doesn’t cause crestal bone loss. The peri-implant density measurements of the progressively loaded implants show continuous increase in crestal, middle and apical peri-implant bone density by time.

Key Words: Conventional Loading; Progressive Loading; Radiographic Assessment
مقدمه
استخوان کرستال اطراف ایمپلنت، به طور متوسط 9 تا 16 میلیمتر تحلیل می‌شود و در کنترل‌های بعدی، میزان تحلیل متوسط سالانه به 1/3 تا 1/4 میلی‌مر کاهش می‌یابد. اما تحلیل استخوان اطراف ایمپلنت پس از یک دور فاکتورنی می‌تواند بیشتر کند و به‌دست آید که ایمپلنت را در شکست قرار دهد. عوامل پاتورمبیا و عامل بیومکانیکال (عملکرد پارکندازی) اضافه به یا یابی ایمپلنت و فاکتور اپیدارکیک اصلی تحلیل استخوان کرستال اطراف ایمپلنت می‌باشد (201).

یک گروه می‌تواند از ساخت پروتز حفاظ نتایج ایمپلنت و فاکتورانیشن
آن با حذف تحلیل استخوان، می‌تواند به‌علت ریمباینگ استخوان
یافت. بیشترین استرس اطراف ایمپلنت، در ناحیه کرستال رخ می‌دهد. بار زیادی یابش بر می‌تواند سمیت استخوان را تحت استرس زدایی داده
پایه استخوان تحلیل استخوان شود (43).

اطراف ایمپلنت بین 3 تا 6 ماه بعد از جراحی انجام شود، بر اساس مطالعه‌های که بر روی ایمپلنت‌های Quinlan
(5) اثبات شده‌است SLA ITI
- 1 Rella می‌تواند
- 2 Non loading
- 3 Non functional
- 4 Functional
- 5 ایمپلنت‌های که می‌تواند در نهایت اثر می‌گیرند
Mandibular implant and crown crowns are an advancement in the field of oral and maxillofacial surgery. Factors affecting these procedures include bone loss, bruxism, and clenching. The G5-12 implant system proposed by Carl E. Misch, Inc. for use in mandibular partial dentures and full dentures is discussed.

Key Points

1. **Bone Loss and Implant Success Rates**
 - Bone loss is a significant factor in implant success rates. A study by Carl E. Misch, Inc. showed that bone loss significantly affects implant stability.

2. **Bruxism and Implant Failure**
 - Bruxism, characterized by grinding and clenching of teeth, can lead to implant failure due to increased stress on the implant.

3. **Clenching and Implant Survival**
 - Clenching, another form of parafunctional activity, can also affect implant survival rates.

4. **Clinical Considerations**
 - The importance of clinical considerations, such as patient history and lifestyle, in implant planning and maintenance.

5. **Implant Materials**

References

روکش آکریلی که تامس-های اکتلوزی آن با کاغذ کارین/ اکتلوزی آن با کاغذ کارین/ با ضخامت ۴۰ میکرون (Arti-Fol Bousch Germany Koln) تنظیم شد به بیمار تحویل داده شد و رژیم غذایی شتر است که تاثیر اولیه خوبی بر کاهش جراحی و رژیم غذایی تشخیص داده شد. خود روزهای بعد از استخوان قرار داده شد.

- در طی ۳ ماه سوم بارگذاری تدیری (ماه ۶ تا ۸)، بیماران با کاغذ کارین ۱۲ میکرون تنظیم شد به بیمار تحویل داده شد و رژیم غذایی شتر است که تامس-های اکتلوزی آن با کاغذ کارین/ اکتلوزی آن با کاغذ کارین/ با ضخامت ۴۰ میکرون (Arti-Fol Bousch Germany Koln) تنظیم شد به بیمار تحویل داده شد و رژیم غذایی شتر است که تاثیر اولیه خوبی بر کاهش جراحی و رژیم غذایی تشخیص داده شد. خود روزهای بعد از استخوان قرار داده شد.

Cover screw (Profile Bi Abutment) (Meliodent Bayer Dental, Germany) در جلسه تحویل، این اپانیم اکتشاز ۲۵ نمونه سانتی‌متر طبق دستور کارخانه سازنده در موقت صحیح خود محکم شد.

بارگذاری تدیری ایمپلنت‌ها طی ۴ مرهکه انجام گردید (شکل ۱، a, b, c, d).

(1) RVG (Radio Visio Graphy) (研究成果 (Arti-Fol Bousch Germany Koln)
(2) RVC (XCP) (研究成果 (Arti-Fol Bousch Germany Koln)
(3) MAF (Microlithography)
دیستال (C,F)

- ایکالک ترتین ناحیه ایمپلنت در مزیال و دیستال (E)
- نهمین و آخرین ناحیه به عنوان مرجع اندازه‌گیری بر روی خود ته ایمپلنت در فاصله 1 میلی‌متری شود.

(Reference)

جمع دیستال ایمپلنت‌های گردید. این مربع از نظر میزان تراکم در X-ray تمامی یکسان می‌باشد.

شکل ۳- نواحی مورد نظر جهت ارزیابی تراکم استخوان

اعداد بدست آمده از 8 ناحیه اطراف ایمپلنت به کمک ناحیه مرجع، یکی می‌باشد و به مقادیر تصادفی Normalize می‌باشد.

نکته

برای ارزیابی تغییرات تراکم استخوان، مربع‌هایی با ابعاد 1 mm² فاصله 1/5 میلی‌متری در سطح ایمپلنت برای جلوگیری از تأثیر آیا ایمپلنت در موقعیت تراکم استخوان، در 9 هالیه تبیین گردید.

 tilomet (شکل ۳) یکی از آنها سطح ایمپلنت از طرفین در نیمه ایکالک و Macro thread در نیمه ایکالک و Micro thread تشکل کرده است. به این ترتیب مشخص شده‌اند:

- ایکالک اولین ناحیه تیمس استخوان به ایمپلنت در مزیال و
- دیستال (A,H)

- ۱- میزان ارتقای استخوان در مزیال و دیستال می‌باشد 1/5 میلی‌متری (شکل ۴) Witch a 3- ۳- حذف 2/3 ایمپلنت در مزیال و Macro thread و Micro thread

که 11 میلی‌متری می‌باشد. جهت حذف پزشک‌های احتمالی

۱۰۴
پرونده‌ای رادیوگرافیک از باوارگذاری تدریجی بر روی تغییرات استخوان کرستال و تراکم استخوان اطراف یافت.

بدن و نتیجه گیری

به منظور بررسی رادیوگرافی از باوارگذاری تدریجی بر روی تغییرات کرستال و دانستی استخوان، ایمپلنت‌های تک و یکتی در ناحیه خلفی ماذگری قرار داده شد. ناحیه خلف ماذگری به این دلیل انتخاب شد که ضعف تری کیفیت استخوان را در ماذگری و مذبیل درا می‌باشد (10) و در صورتی که باوارگذاری تدریجی قادیر به ایجاد تغییر در کیفیت استخوان باشد می‌توان این آرایه سینوس‌دری ناحیه خلف ماذگری داشته باشد.

انالیز امری بر روی داده‌های بدست آمده از 10 میلی‌متر (A) انجام گردید.

تیتر و نویسنده‌ی مقاله

۱- کرستال (میانگین مربوط به H,G,B,A
۲- میانی (میانگین مربوط به F,C
۳- ایپیکال (میانگین مربوط به E,D

۴- تراکم استخوان اطراف ایمپلنت به سه ناحیه تقسیم شد:

جدول ۱- تراکم استخوان کرستال

<table>
<thead>
<tr>
<th>زمان پیگیری</th>
<th>تراکم استخوان کرستال (Mean (mm) ±SD (mm))</th>
</tr>
</thead>
<tbody>
<tr>
<td>پس از ۳ ماه</td>
<td>12.7 ± 0.1</td>
</tr>
<tr>
<td>پس از ۶ ماه</td>
<td>14.2 ± 0.2</td>
</tr>
<tr>
<td>پس از ۹ ماه</td>
<td>15.8 ± 0.3</td>
</tr>
<tr>
<td>پس از ۱۲ ماه</td>
<td>17.3 ± 0.4</td>
</tr>
</tbody>
</table>

جدول ۲- تراکم استخوان در سه ناحیه کرستال، میانی و ایپیکال اطراف ایمپلنت

<table>
<thead>
<tr>
<th>زمان پیگیری</th>
<th>(A+B+G+H) ناحیه کرستال (Mean ±SD)</th>
<th>(C+F) ناحیه میانی ریشه (Mean ±SD)</th>
<th>(D+E) ناحیه ایپیکال (Mean ±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پس از ۳ ماه</td>
<td>68/57</td>
<td>13/7</td>
<td>11/23</td>
</tr>
<tr>
<td>پس از ۶ ماه</td>
<td>70/60</td>
<td>14/8</td>
<td>12/3</td>
</tr>
<tr>
<td>پس از ۹ ماه</td>
<td>72/65</td>
<td>15/9</td>
<td>13/1</td>
</tr>
<tr>
<td>پس از ۱۲ ماه</td>
<td>74/71</td>
<td>16/10</td>
<td>14/2</td>
</tr>
</tbody>
</table>
Astrand and McKernan in 2004 reported on the same study. They concluded that Astra Tech implants were as successful as Branemark implants in terms of survival. Lee et al. (14) presented a similar study comparing Astra Tech and Branemark implants and found that the survival rates were comparable. However, this study was limited to a small number of patients and further research is needed to confirm these findings.

References:

topics:

- Intravenous anesthesia
- Implant survival rates
- Immediate loading implants
- Biomechanical considerations
- Periodontal therapy
- Radiographic assessment
- Gradual loading protocols
- Osseointegration
- Clinical outcomes
- Prosthetic stability
- Comparative studies

Manuscript:

[108]

