Comparison of anthropometric measurements as substitutes for McNamara’s cephalometric maxillomandibular unit measurements

Mojtahedzadeh F1, Alizadeh S2

1- Assistant Professor, Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences
2- Dentist

Background and Aims: Cephalometric measurements cannot be performed for screening purposes, therefore orthodontists usually have to use either photographic or anthropometric measurements in such occasions. Finding a valid and reliable alternative could be of great value. The purpose of this study was to evaluate the correlation between McNamara’s cephalometric unit difference and a proposed soft tissue equivalent.

Materials and Methods: An anthropometric ruler was redesigned and used in this study. Soft tissue measurements were performed on 36 randomly selected specimens by two investigators. The soft tissue measurements included external auditory meatus to subnasale (Ext–Sn), external auditory meatus to soft tissue pogonion (Ext–Pog), and the difference between them (UDMA’). These measurements were considered as equivalents to cephalometric indices in McNamara’s anteroposterior measurements, including maxillary (Co–A) and mandibular (Co–Gn) unit length and their difference (UDMA).

Results: All soft tissue variables had an intra-class correlation coefficient (ICC) above 0.90. There was a high and significant correlation between cephalometric and anthropometric measurements (P<0.01). The ICC between (Ext–Sn) and (Co–A) was 0.890, 0.869 between (Ext–Pog) and (Co–Gn), and 0.819 between UDMA’ and UDMA.

Conclusion: The proposed anthropometric method showed a good correlation with cephalometric equivalents and the results show that this method could be used for screening purposes, especially when a low-cost, non-invasive method is required. However, it cannot be considered as a substitute for cephalometry in diagnostic and treatment purposes.

Key Words: Orthodontics; Clinical diagnosis; Anthropometry; Correlation

Journal of Dental Medicine-Tehran University of Medical Sciences 2011;24(2):87-93
مقایسه انداده‌گیری‌های به دست آمده از الگوریتم‌های بین‌ساختاری و پایه‌بندی رای دوم: دکتر فرامرز مجتهد زاده و دکتر سعید علیزاده

الگوریتم (Inter-rater) در اینجا به آن‌ها اشاره می‌شود.

یافته‌ها:

1. نقطه میانگین مطلق (Mean Absolute Differences, MAD) بین الگوریتم‌های بین‌ساختاری بین 1.6 تا 2.5 درصد بود.
2. مقدار میانگین مطلق (Mean Absolute Difference, MAD) بین الگوریتم‌های بین‌ساختاری بین 1.6 تا 2.5 درصد بود.

نتیجه‌گیری:

الگوریتم‌های بین‌ساختاری در اینجا بهترین امتیاز می‌گیرند.

کلید و اشارات:

نتایج بانی:

t-test:

مقدمه

مطالعه‌گیری شاخه‌ای از الگوریتم‌های BCI بین‌ساختاری و

ناهجاری‌های دانلی - SSH - هستی چنین در زمینه تغییر نوع و

برنامه‌برداری جهت پیشگیری و درمان این ناهنجاری‌ها دارد. در مطالعات

جمعیت شناختی این‌که با علم‌هایی که باشد؛ انجام می‌گیرد، امکان استفاده از فن‌ها که به وسیله تشخیص دقیق

زمینه کشف ناهنجاری‌های فک، است. وجود ندارد. از دلایل اصل

غیر متواری در می‌توان به هزینه بالا، دشواری

فی و ملاحظات اخلاقی مربوط به زبان‌های بالقوه است که استفاده

مقدش که در انتخاب دیگر طبق مطالعات می‌توان به هزینه نمود. به همین دلیل، پژوهشگران تلاش کرده‌اند تا جای

شاخه‌ها کم‌تر شوند و در این مطالعات بهره

گیرند، اما به نظر می‌رسد هیچ یک از شاخه‌های رابط مبایری برای

توپیک و همچنان به دست ندارد. در نتیجه از دقت کافی برای

مهم برخوردار نیستند. به این‌سان مثال، معرفت‌های و پردازه‌های

شاخه‌ها به‌عنوان ICON و IOTN، TPI،

برای تغییر نوع و شدت ناهنجاری هره می‌گیرند (3-1). اما

می‌توان دیدن در این شاخه‌ها قابلیت‌های روابط استکلرنا را دارا

باشند موضوع پیش‌نیاز و قابل ترید است.

محل و بر مطالعات;

ناهجاری‌های استکلرنا بوده که گزارش سازگاری از واقعوسیری

با ناهنجاری می‌شود. شاید به نوبه توانایی از مطالعات را دو

دسته کلی توصیه کرد: یک چکرگیری از فن‌ها و دیگر

اندامه‌گیری مستقیم با اتروتوپرک بر روی صورت بیمار.

مطالعاتی که از فن‌ها برای بیمار و پیش بینی وضعیت

استکلرنا در سطح استفاده می‌کند، اساساً برای بدن گونه هستند که

88
فکی اورجت امست Zupancic
اروجت بیمار تلخی نمودن که روابط فکی زیرین را پیش بیای نماید
که همسانی خوبی میزان اورجت و رابطه فکی در بیماران
کلاس 1، کلاس 2 و کلاس سه مشابه شد (8). با این وجود اورجت قادر به تشخیص روابط اکستاکشن کلاس دو
به عنوان نمونه‌های این مطالعه در نظر گرفته شدند.

برای بررسی انازدارگیری‌های سفالومتریک مطالعه از
اندازه‌گیری‌های طولی و پهنای نمودن دو کاربر استفاده شد. دیدن
نزدیکت که بر روی باند سفالومتر همبستگی قابل خوردن (Cd)
نقطه G و پاناسون (Gn) مشخص شد. نقطه این تهیه شده توسط
متغیر اکستاکشن تأثیر می‌گیرد. سپس اکستاکشن طول مدت ماکزیمیلا
به نهایت تبیین و نهایت تفاوت آنها تحت عنوان اختلاف
ماژورومبنیوال بافت سخت (UDMA) محاسبه گشت (شکل 1).

شکل ۱- نمونه ترینتهای انجام شده در مطالعه

روش بررسی

از آنجا که در جستجوی منابع مطالعه‌ای مشابه یافته نشد، برای
تحقیق حاضر مطالعه‌ای توصیفی مقایسه‌ای به شکل
گرفته شد. نمونه‌های مورد بررسی در آن مرحله‌ای به بخش ارتدسی
دانشکده دندانپزشکی دانشگاه علوم پزشکی تهران بوده که جهت
درمان در بخش متريک ارتودنسی پذیرش شده بیماران همگی
سافلومتریکی دانشکده از یک مرکز (بخش رادیولوژی دانشکده
دندانپزشکی دانشگاه علوم پزشکی تهران) تهیه و از زمان نهایی

شکل ۲- خط کش مورد استفاده در مطالعه

سافلومتریکی نیا و همکاران با همبستگی از میزان

مقايسه اندازه‌گیری‌های به دست آمده از آنالیز مک‌نارام با مدل‌های پیشنهادی روي بافت نرم

دکتر فرامرز مجیدی‌زاده و دکتر سعید علیزاده

در مراحل بعد اقدام به اندازه‌گیری قفل‌های ریوی بافت نرم انجام شد. برای انجام این رویه، در ابتدا مختصات (شکل 2) جهت اندازه‌گیری شاخه‌های انترهوستیک روي برای موردی بیماران طراحی و ساخته شد. این خط کش اساسی از یک قسمت مخروطی جهت قرار گرفتن در مجری گوش خارجی، یک قسمت مرجغی جهت متحرک برای اندازه‌گیری قابل و یک میله قائم که با باتری صورت بیمار در این نقاط تمام می‌باشد، تفکیک شده است. اندازه‌گیری در حالی انجام شد که قسمت مرجغی و سیله مویی پیان مید ساینتال و میله قابلیت آن مواد که اتصال دهنده دو مانکس چشم قرار گیرد. اندازه‌گیری با یک آبیابی بافتی انجام می‌شود، دید مفهومی که بافت نرم توسط خط جهت تغییر ملدین قرار می‌گرفت تا جایی که مقاومت از سوی بافت سخت ترین بافت عمکر احساس شود.

شکل 3– اندازه‌گیری انترهوستیک طول موثر ماژیلا

شکل 4– اندازه‌گیری انترهوستیک طول موثر میانگین

همان قسمه که پیش‌تر نیز عنوان شد ضریب همستگی بین تغییرات همستگی میان مجموعه‌های سفالومتری و متفاوت‌های انترهوستیک استفاده شده. این ضریب همستگی در جدول 2 امکان‌پذیر بود.

یافته‌ها

مجموعه عمر اندازه‌گیری مربوط به 6 متغیر اندازه‌گیری شده در این مطالعه در جدول 2 اردو شده است. Pearson همان گونه که پیش‌تر نیز عنوان شد ضریب همستگی بین تغییرات همستگی میان مجموعه‌های سفالومتری و متفاوت‌های انترهوستیک استفاده شده. این ضریب همستگی در جدول 3 امکان‌پذیر بود.

90
جدول 1- ارزیابی میزان اطمینان (95% CI) به کمک Coefficient Correlation

<table>
<thead>
<tr>
<th>متغیر</th>
<th>95% CI Lower bound</th>
<th>95% CI Upper bound</th>
<th>ICC*</th>
<th>میانگین افتستگی از میزان</th>
<th>میانگین سطح از میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext-Sn</td>
<td>0.99 / 0.99</td>
<td>0.99 / 0.99</td>
<td>0.99</td>
<td>0.99 / 0.99</td>
<td>0.99 / 0.99</td>
</tr>
<tr>
<td>Ext-Pog</td>
<td>0.97 / 0.97</td>
<td>0.97 / 0.97</td>
<td>0.97</td>
<td>0.97 / 0.97</td>
<td>0.97 / 0.97</td>
</tr>
<tr>
<td>UDMA-</td>
<td>0.96 / 0.96</td>
<td>0.96 / 0.96</td>
<td>0.96</td>
<td>0.96 / 0.96</td>
<td>0.96 / 0.96</td>
</tr>
</tbody>
</table>

*Intra class Correlation Coefficient
**Confidence Interval

جدول 2- آمار توصیفی متغیرهای مطالعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>میانگین</th>
<th>انحراف معیار</th>
<th>میانگین</th>
<th>انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cn-A</td>
<td>0.88/0.88</td>
<td>0.77</td>
<td>0.77/0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>Cn-Pog</td>
<td>0.97/0.97</td>
<td>0.43</td>
<td>0.43/0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>UDMA-</td>
<td>0.95/0.95</td>
<td>0.76</td>
<td>0.76/0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Ext-auditory meatus-Sn</td>
<td>0.96/0.96</td>
<td>0.34</td>
<td>0.34/0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>Ext-auditory meatus-Pog</td>
<td>0.96/0.96</td>
<td>0.34</td>
<td>0.34/0.34</td>
<td>0.34</td>
</tr>
</tbody>
</table>

جدول 3- خرید میزان متغیرها

<table>
<thead>
<tr>
<th>متغیر</th>
<th>Coefficient Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cn-A</td>
<td>Ext auditory meatus-Sn</td>
</tr>
<tr>
<td>Cn-Pog</td>
<td>Ext auditory meatus-Pog</td>
</tr>
<tr>
<td>UDMA-</td>
<td>UDMA</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری

بحث و نتیجه‌گیری (6) معنی‌تنهایی از نظر آزمایشگری در مورد روابط اسلالام و انتروپومتریک با یکی از اندازه‌های مرتبط سطحی (اندازه مک تامارا) به‌وجود آمده است. برای بررسی تأثیر شده است که بین روش‌های اندازه‌گیری که سال‌های زیادی از آن استفاده می‌شود و انتروپومتری ارتباطی برقرار نکنند. برای همین منظره، روش پیشنهادی بر اساس اندازه مک تامارا لگوس در نوع واحد Unit difference و باید به کمک Unit difference شده در این آنالیز، نقاط منطقه‌ای مناطق عرضی با مداوم

91
میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره، مناسب‌ترین روش انتخاب گزینه‌ها در مطالعه برای انتخاب شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره، مناسب‌ترین روش انتخاب گزینه‌ها در مطالعه برای انتخاب شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌ها از جهت اطمینان از اندازه‌گیری برای شاخص‌های یک‌باره است. برای انتخاب شاخص‌های یک‌باره، میزان انتخاب گزینه‌های یک‌باره مناسب‌ترین روش انتخاب گز

92