بررسی اثر استفاده از کامپوزیت‌های Condensible و Flowable در میزان میکروالکچر

دکتر اسماعیل باسنی - دکتر تبه محمدی

دانشگاه گوره، آموزشی ترمیمی دانشکده دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی، دماین تهران

استاد بار گوره آموزشی ترمیمی دانشکده دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی، دماین رفسنجان

Title: An evaluation on the effects of flowable or condensable composites application on microleakage

Authors: Yasini E. Associate Professor*, Mohammadi N. Assistant Professor**

Address: *Dept. of Operative Dentistry. Faculty of Dentistry. Tehran University of Medical Sciences
**Dept. of Operative Dentistry. Faculty of Dentistry. Rafigh University of Medical Sciences

Abstract: Posterior composite restorations, due to polymerization contraction, result in microleakage. Different methods have presented to reduce this phenomena. The aim of this study is to evaluate the effects of flowable and condensable composites to reduce microleakage. Seventy extracted human teeth were prepared with proximal class II cavities with gingival margin 1 mm below CEJ. The teeth randomly were divided into 7 groups. Groups I & II were restored with a dentin bonding (DB) agent plus a Prodigy condensable (Kerr Co.) composite, placing incremental or bulky, respectively. In groups II, IV, V a dentin bonding agent was applied and then cavities were restored with Tetric flow composite resin as a base plus either a hybrid composite (Tetric ceram, Vivadent Co.) or a Prodigy condensable composite (Cond.), placing bulky or incremental. Groups VI and VII were restored with a resin modified glass ionomer (GI) (Fuji II Lc Co.) as a base plus either Prodigy condensable or Tetric ceram. Restorations were polished, thermocycled, and immersed in 0.3% basic fushin. After that samples were sectioned and studied under a stereomicroscope to evaluate dye penetration. Results showed that all restorations showed some degree of microleakage and according to kruskall- wallis statistical analysis, there were not any significant differences between all groups (P=0.051). Then fore pair comparison, between groups, Mann-Whitney analysis was used and no statistical difference was observed. However, GI- DB- Tetric group showed the least microleakage and DB+ Cond (bulk) the most one. Due to lack of any statistical difference among different materials methods, it is concluded that no method or restorative material have been able to eliminate microleakage in margins completely yet, and using a flowable composite resin, in place of resin modified glass ionomer or using a condensable composite, instead of conventional hybrid composites, do not have any effect on microleakage reduction.

Key Words: Microleakage- Posterior composite- Flowable composite- Condensable composite- Glass ionomer cements

Journal of Dentistry. Tehran University of Medical Sciences (Vol. 14, No. 4, 2002)

چکیده

ترمیم‌های کامپوزیت خلفی به دلیل انقباض ناشی از بیلیورژاسیون دیوار میکروالکچر می‌شوند. روشهای مختلف برای در Condensible و Flowable کاهش این امر ارائه شده است. هدف از این تحقیق ارزیابی اثر استفاده از کامپوزیت‌های میزان میکروالکچر می‌باشد. حفره‌های کلاس II بر روی ۲۰ دندان کشیده شده سالم انسان به نحوی که مارزین
کلید واژه ها: ترمیم کامپوزیت خنثی - کامپوزیت Flawable - میکرولفایک - کامپوزیت Condensable

کمک‌دهی

امروز به دلیل نفاذی روزافزون بیماران از ترمیم‌های هم‌نویج دندان خنثی، استفاده از رزین کامپوزیت‌های خنثی افزایش یافته است. این ترمیم‌های با وجود مزایایی که دارند از جمله زمانی که گیره کامل حذف نیست و استفاده از کامپوزیت خنثی به جای رزین میکرولفایک غلاف Flawable یا استفاده از کامپوزیت Condensable معمول، تأثیری در کاهش میکرولفایک نداشت.

Condensable - میکرولفایک - کامپوزیت Flawable - ترمیم کامپوزیت خنثی

مجله دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران (دوره 14، شماره 2، سال 1380)
در میزان مکروکلیکی Flowable و Condensible

روش بررسی
این بررسی به صورت تجربی (In vitro) انجام گردید. برای این کار 70 عدد دندان مولر با پلمر سالم انسانی که به دلایل ارتدنسی، بیماری پروپی و یا نیمهنهفته در دو ماه گذشته کشیده شده بودند و از نظر ظاهری عاری از هرزگونه بیسیمی و در جمع آوری گردید. این دندان‌ها بعد از کشیدن در کاملاً فشرده و درون آب مقدار در دمای اقلیم تغییر معنی‌داری نداشتند. برای تعیین تعداد فیبرهای 11405 ISO مبتنی بر اساس عمل گردید. در مراحل بعد دندان‌ها به تعداد 3 گروه تصادفی در گروه دشت کنار گرفتند. در یک سطح بروزگامی زنده در دندان توسعه هسته‌ای به دو بالا و اسیری آب و هوا و فر زمان 3 هفته، باکس نه به گردید. ابتدا باکس تراشیده شده از نظر باکتیروئولوژی در سمت زنیویل و میلی‌متر در اکثرال حذف 7/5 میلی‌متر و در اکثرال حذف 7/5 میلی‌متر

در حد قابل توجهی کشید مازنیویل و حتی در بیشتر مواد مکروکلیکی در مازنیویل میکار بر روی کامل

دیده شده که رنگ‌نشت در مازنیویل به Davidson و

در حالت تحقیق کنترل از مازنیویل و دوی‌پالی و حتی در

بیشتر مواد مکروکلیکی در مازنیویل میکار بر روی کامل

حذف گردیده است. (1)

هر روشی که بتوانند تنش ناشی از انقباض بیلیمیراسیون

را نجحی جبان کند، در کاهش مکروکلیکی نشی دارد. هرچند ات کنون هیچ روش خاصی که بتواند به صور توطیق

مکروکلنیکی را در مازنیویل عالی رجوع کند

ارائه شده است.

طبق قانون Hook، تشکل انقباض بیلیمیراسیون با مقدار

انقباض و استیکس مسرود ماده در ارتباط است: به عبارت

دیگر هرچه کامپوزیت، قابلیت الاستیک بیشتری داشته باشد، بهتر می‌تواند تشکل انقباض را کاهش دهد. ریز

کامپوزیت‌های دارای فیبر بیشتری کمتر منفی می‌شود

وی به دلیل بالاتر بودن الاستیک مسرود آنها تشکل انقباض بیلیمیراسیون افزایش می‌یابد (2، 3).

دانک یک لايه بیانی از اعمال باندیکتی به یک لاین

انقباض بیشتری به ضخامت 150 میکرون بین کامپوزیت و

نسم دندان می‌تواند تنش نهایی را 18 تا 10% کاهش دهد

و به همین مقدار هم در کاهش مکروکلیکی نقش دارد (1، 2).

این امر منبع استفاده از کامپوزیت‌های Flowable

عندان بیس گردید.

طبق بررسی‌های انجام‌شده یکی از روش‌های جبان

انقباض بیلیمیراسیون، انقباض بیشتری ماده ترمیمی است: به

همین منظر کامپوزیت‌های Flowable

تشکل. جین اموازه است که این کامپوزیت‌ها به وجود

انقباض بیشتری به دلیل انقباض بیشتری یودون و نسبت به این

دلیل به سطح را بهتر ممکن شده در بهبود توطیق

مارازینالی نش دارد (2).
بعد از پرشندن گردو یک ملیمتر بینی‌تر از QVJ
دانش. عمق حفره در زنیپولا ۲ ملی‌متر بود. هم گونه
بی‌روی در اینجا حفره داده شد، سپس دندان‌ها در
گردو‌های مختلف به شرح زیر ترمیم شدند (مواد مورد
استفاده و ترکیبات آنها در جدول ۱ آمده است).
گردو اول: اینجا با اسید فسفوریک ۲۷٪ (شرکت کیما)
سپوش مینیاس و عاجی در مجموع به مدت ۱۵ ثانیه اج
گردیدند. سپس تخمینی جهت حفظ شدن و با
فشار مسیار ملامین هوا اضافات آب برداشته شد; سپس یک
Excite (Vivadent) لایه از عامل اتصال‌دهنده عاجی
توسط ایلکاتور مخصوص خود به تمام ابعاد حفره زده شد و
به مدت ۱۰ ثانیه ایلکاتور عمل انجام گردید.
بعد از این مدت فشار ملامین هوا، خالصانه خیز پذیر
شد؛ سپس به مدت ۲۰ ثانیه عامل اتصال‌دهنده عاجی کور
گردید. بعد ماتریکس شفاف به دور دندان بسته شد و با
انکشاف قسمت زنیپولا آن کاملاً به دندان تکیه داده شد.
سپس کامپوزیت Condensable (Kerr) مربوطه درون
Injectors لایه‌ای به توسط حفره قرار گرفت و
کاملاً توسط کنداساتور فلزی متراکم گردید. بعد از پرشندن
کل حجم باکس پروژیمیالی به مدت ۲۰ ثانیه از اکلوزال
۲۰ ثانیه از لینگول کور گردید. چون
کارخانه سازنده معمولاً است این ماده را می‌توان حیات
به ضخامت ۵ میلی‌متر کیور نمود، در مواردی که ارتفاع باکس
پروژیمیالی بیش از ۵ میلی‌متر بود، کامپوزیت در دو لایه
قرار گرفت.
گردو دوم: بعد از طی مراحل اچ‌کردن و باندینگ
مطابق گردو اول و سپس ماتریکس شفاف، کامپوزیت
به نوعی به ضخامت یک ملیمتر بینی‌تر بنا شد و
قرار داده شد؛ سپس به مدت ۱۵ ثانیه از اکلوزال
۴۰ ثانیه به دستگاه لایه‌بندی کور می‌رسید. یک
گردید:

گردو ششم: بعد از کاندینیژن کردن حفره با سید
Fuji II LC سپس برای درمان کانسپتیو، مدمج و باکس
CEJ پروژیمیالی به ضخامت یک ملیمتر بینی‌تر "نقا" قرار داده شد و به
تایید کور، مسیار ملامین هوا اضافات آب برداشته شد و به

در میزان میکروکسیمیک

بررسی اثر استفاده از کامپوزیت‌های Condesable و Flowable

در مورد میکروکسیمیکی

دکتر اسماعیل باسینی - دکتر تغییر محمودی

و بعد یک لایه عامل باندیک

فشار ملامی دارد. حالا باندیک ترکیب شد و به مدت ۱۰

ثابت که یون گردید. بعد از بستن ماتریکس شفاف به دور

دنده کامپوزیتی Prodigy Condensable

به ضخامت کمتر از ۳ میلی‌متر می‌توانند حفره قرار گیرند.

متراکم شدند و هر یک یا ۴ ثابت یک یون گردید تا به هم حجم

حفره پر شد. به نتیجه ۴۰ ثابت از باکال و ۴۰ ثابت از

لینگز کیور گردید.

گروه هفتم: بعد از کاندینت کردن و قرار دادن گیاس

بوتوم نوی و عمل انجیش و ملدین با پنیک و بستن نوار

ماتریکس شفاف به دور دندان مقدار گروه هشتم، کامپوزیت

به صورت لایه‌ای طبیعی درون باکال گردید.

تیتیک Ceram گرفته و هر یک ۴۰ ثابت از اکلوسال کیور گردید.

بعد از

براشدن گل حجم حفره در نهایت ۴۰ ثابت از باکال و ۴۰

ثابت از لینگز کیور نوار داده شد. بعد از ترمیم ۷۰ دندان

و برداشت آنها، نمونه‌ها درون بسته‌بندی انجام شد و نمونه‌ها

تحت نمایشگیری قرار گرفتند تا در موقع شیب‌سازی از

محط دهان انجماد کرده داده نمونه‌ها بطور منظم در

در داخل محفظه‌های بی گرم با دما به ۵۵۰ درجه

سانتی گراد و آب سرد دو درجه سانتی گراد گرفتند.

مقدار غوطه‌وری نمونه‌ها در هر محفظه

تا باند و کل زمان یک سیکل کامل، ۱ دقیقه و ۳۰ ثانیه به

طول انجام می‌گذارد. این عمل ۵۰ بار تکرار گردید؛ بعد آیکس

دنده‌ها توسط موم حجم کامل سیل شد و تمام سطوح

دنده‌ها تا فاصله ۱ میلی‌متر از میزبان ترمیم با دو لایه لاک

نامی پوشانده شد تا نفوذ رنگ تنها به مارزین حاصل

شود. بعد گروه‌ها در طریق جدایی استفاده محلول فوشین

پازی ۱/۲ در حراز ۲۷ درجه سانتی‌گراد درون انکوباسیون

به مدت ۱۸ ساعت تکاهاری شدند. بعد از این مدت دندان‌ها

<table>
<thead>
<tr>
<th>کارخانه سازنده</th>
<th>نوع محصول</th>
<th>ماده</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC 120341</td>
<td>Resin Modified glass Ionomer</td>
<td>Fuji II LC</td>
</tr>
<tr>
<td>Vivadent C00322</td>
<td>Flowable composite</td>
<td>Tetric Flow</td>
</tr>
<tr>
<td>Vivadent A05871</td>
<td>Hybrid composite</td>
<td>Tetric Ceram</td>
</tr>
<tr>
<td>Kerr 003B16</td>
<td>Condensable composite</td>
<td>Prodigy Condensable</td>
</tr>
<tr>
<td>Vivadent B32019</td>
<td>Dentin bonding Agent</td>
<td>Excite</td>
</tr>
</tbody>
</table>

جدول ۴ - مقایسه بین گروه‌های مختلف درمی‌توسط Mann-Whitney

<table>
<thead>
<tr>
<th>مقایسه</th>
<th>Tبتیجه</th>
<th>P</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.S</td>
<td>-0.96</td>
<td>-1/150</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>-1/25</td>
<td>-1/364</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>0.30</td>
<td>0.486</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>0.39</td>
<td>0.629</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>0.40</td>
<td>0.632</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>0.99</td>
<td>1/27</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>-0.95</td>
<td>-1/392</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>-0.95</td>
<td>-1/498</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>-0.95</td>
<td>-1/498</td>
<td></td>
</tr>
<tr>
<td>N.S</td>
<td>-0.95</td>
<td>-1/498</td>
<td></td>
</tr>
</tbody>
</table>

بحث

توضیحات

توجه داده شده است که در جدول ۳ اورده مورد بررسی در جدول ۴ اورده داشته باشند. تحلیل آماری تفاوت معنی‌داری را در میزان

جدول ۲ - توزیع فراوانی در جدول ۳ گروه دومی‌میکروکلیکس

<table>
<thead>
<tr>
<th>گروه</th>
<th>آزمون</th>
<th>تعداد</th>
<th>گروه 1</th>
<th>گروه 2</th>
<th>گروه 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>گروه 1</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>گروه 2</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>گروه 3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

پایان‌های میکروکلیکس ۷ گروه درمی‌توسط Mann-Whitney

توجه داده شده است که در جدول ۴ اورده داشته باشند.
نیک در بررسی خود مشارکت کرده است که استفاده از سمان زین مشابه گلاس پونومر با کامپوژیت به عنوان بیس در حفاظت بر روی گلمنالیم قرار گرفته است، میکروپلک دارد. حذف میکروسکوپیکی در میان گرگره میکروپلک دارد. همچنین در جایگاه داده دیده شده است (5).

مشابهت دارد. راهکار دیگر برای کاهش میکروپلکمتیسم دارد. کامپوژیت خلفی استفاده از یک لاپ گلاس پونومر در کف حفظ است (6).

اگرچه این گلاس پونومرها به شکل فیبروسیمتیکی به دندان باند می‌شوند و تحقیق نشان می‌دهد همچنین با قرار گرفت کامپوژیت گلاس پونومر به عنوان لایه حجب کامپوژیت هم کنتر شده و C-Factor مشابهی کرده است (6).

Ferdianakis

میزان میکروپلکمتیسم دارد. کامپوژیت Flowable استفاده و مشابهت گردد. با قرار دادن کامپوژیت میزان میکروپلکمتیسم تغییر می‌نیاز دارد. این است که Flowable Flowable استفاده در مطالعه حاضر در سه گروه از کامپوژیت به عنوان لایه در کف حفاظت بر روی گلمنالیم حاصل می‌شود.

Kemp-Schol: و Davidson

یک لاپ یک گلاس پونومر با میزان 20% کاپس می‌دهد (1).

Sidhu

هم شناس استفاده از کامپوژیت دارد. Condensable به عنوان لایه در زیر کامپوژیت‌های Flowable به عنوان دارای میکروپلکمتیسم را در میان گرگره می‌کاهد. سمان کاهش می‌دهد؛ هر چند با وجود کاهش میکروپلکمتیسم، هنوز ریزش مشابهش دارد.

Leevaijo

Flowable گزارش شده است که استفاده از کامپوژیت‌های Flowable به عنوان لایه در زیر کامپوژیت‌های Condensable به طور معمول در Tolidis اجرای طرح این نمریت‌هایی است (11).

همکاران نیز در بررسی خود این امر را تأیید نموده‌اند (11).

برای استفاده در مطالعه حاضر دیده شد هرگز در زیر کامپوژیت‌های Condensable یا لاپ گلاس پونومر می‌پردازد.

Chuang

کامپوژیت در کف حفاظت بر روی گلمنالیم کلاس II نیز به طور معمول تغییر می‌یابد.

برای این اساس در مطالعه حاضر در سه گروه از کامپوژیت به عنوان لایه در کف حفاظت بر روی گلمنالیم حاصل می‌شود.

کامپوژیت Flowable کلاس II در میکروپلکمتیسم میزان تفاوت ایجاد نمی‌کند، هر چند میزان تخلخل و حباب (Void) در حد فاصل بااندازه‌گیری می‌پردازد (8).
تمیز کردن با کامپوزیت‌های Packable کامپوزیت‌های هیربریست است (8) بخشی محققین از جمله و Saunders Crim. و Murihead معتقدند قرار دادن کامپوزیت‌های خالی در لایه‌های مجزا به شما که می‌تواند کامپوزیت‌های کمکی می‌کند (13،14). استفاده از روش لایه‌بندی چینی Tetric که به شما که به دلیل کمتردن حجم کامپوزیت انتقاد کلی کاهش می‌یابد و به علاوه از پلیمرابانون کامل رنگ کامپوزیت اطمینان حاصل می‌شود. تشان دادن Finite Element که تکنیک لاواسی به‌صورت توده‌ای (Bulky) منجر به تنش آنتقاض می‌شود (15). در بررسی لایه‌بندی‌بندی دری نور و Kemp-Scholte، که مشاهده کردن که در روش فردینانت و لاواسی به شما که مشاهده می‌شود و روش لاواسی به راه حل قطعی لیکج مارزینال نیست (16).

کارخانجات سازنده کامپوزیت‌هایهای Condensable اما که می‌توان آنها را به صورت توده‌ای تا عمق 5 میلی‌متر و یا یک بار تا 5 میلی‌متر نور به دقت 40 ثانیه کور کردن هر جلسه حاضر دیده که در هیچ‌یک از روش‌ها، مکروبلکچن کاملاً حذف نگردید و با وجود کمتر بودن لیکج در روش لاواسی به تفاوت می‌دارد. تأثیر به‌دست آمده تقریباً مشابه مطالعه بود (17)، در مطالعه حاضر از یافته‌های Affleck، تکمیل‌جویان (Excite (Vivadent) استفاده شد و جن هدف، بررسی اثر عوامل اضافه‌دهنده عاجی مختلف در کامپوزیت مکروبلکچن نیوست سپس در تمام گروه‌ها از یک پانیدنگ واحد استفاده گردیده؛ هر جلسه مطالعات نشان دادند که مکروبلکچن تحت تأثیر تکثیر شیمیایی عوامل پانیدنگ، عاجی و رنگ کامپوزیت قرار می‌گیرد و به‌طور استمری نوع

این یافته‌ها به مدل تحلیل‌های انجام‌شده توسط نرم‌افزار مدفایند (13) همخوانی دارد؛ وی مشاهده نمود استفاده‌ای از رنگ مکروبلکچن باعث گزارش به عنوان لایه‌های مصرفی ایجاد می‌گردد که به این صورت دیده می‌شود (12).

با توجه به مجموعه این نتایج به نظر می‌رسد در جیره‌های با C-Factor با روش استفاده از یک لایه رنگ می‌تواند استفاده کامپوزیت‌های شود در جنگ سال‌ها تلخ‌سازی در جهت آرا در زیر کامپوزیت‌ها استفاده شود در جنگ سال‌ها که کارکرده با این مشاهده بالا گرفته شده و بر همین اساس کامپوزیت‌های HEMACLIP و RCA استفاده شده است. Prodigy، کامپوزیت مورد استفاده در مطالعه حاضر، محصول مشود و از این کامپوزیت تیپ بانی در رنگ به RCA و HEMACLIP و Coagulation به رنگ مانع تجمع و انواع مدل‌ها، مانند از افزایش مناسب به تاثیرات به عمل امده است. افزودن دو جزء Condensable و دو کره (Kerr) می‌تواند به عمل امده در در مطالعه حاضر بین گروه‌ها به بروز لایه‌ای FLOWABLE استفاده شده بود Condensable از کامپوزیت هیربریست که می‌توانست که به تفاوت می‌دارد مشاهده شده. هر جلسه مکروبلکچن در کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت هیربریست که می‌توانست که به تفاوت می‌گذارد مشاهده شده. هر جلسه مکروبلکچن در کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت هیربریست که می‌توانست که به تفاوت می‌گذارد مشاهده شده. هر جلسه مکروبلکچن در کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA را تأثیر می‌گذارد. استفاده شده بود Condensable از کامپوزیت HEMACLIP و RCA.Rheological Control Additive = RCA
زین کامپوزیت با عامل باندینگ علیه همان کارخانه سازنده مورد استفاده قرار گرفت (15)؛ از طرفی که باندینگ متغیر محسوب نمی‌شده، در ۵ گروه به طور یکسان، یک نوع باندینگ مورد استفاده قرار گرفت.

نتیجه گیری

یافته‌های آین مطالعه نشان داد که هیچ یک از موادی که جدیداً ارائه شده‌اند از جمله کامپوزیت‌های Flowable قادر به حذف کامل میکرولیک نیستند و همچنان استفاده از سمان‌های زین

منابع:

9- Beznez C. Microleakage at the cervical margin of composite class II cavities with different restorative techniques. Oper Dent 2001; 26: 60-69.