مروری بر مقالات میکروبیک و روش‌های اندازه‌گیری آن

دکتر حکیمی سیادت* - دکتر علی میرفاضل‌یان**

استادیابی بخش پروتزهای متراکم فک و صورت دانشکده دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی، درمانی تهران

*استادیابی بخش پروتزهای متراکم فک و صورت دانشکده دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی، درمانی تهران

چکیده

میکروبیک در رستوریشن‌ها مهم‌ترین عامل در افزایش طول عمر آنها می‌باشد. میکروبیک می‌تواند سبب عود یوسیده، ایجاد شکستگی‌های لبه مارجین و تغییر رنگ لبه‌ها و هم‌سایت دندان‌ها شود. روش‌های مختلفی جهت نشان دادن میکروبیک وجود دارد. مقاله حاضر حاصل بررسی مقالات موجود در مقالات از سال 1967 تا 1999 میلادی که در داخل کشور قابل دسترس بود.

کلیدواژه‌ها: میکروبیکی - اندازه‌گیری میکروبیکی - ترمومایکینگ

مجله دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی، درمانی تهران (دوره 15، شماره ۲، سال ۱۳۸۱)

مقدمه

در سال 1861 به منظور پربردی توانایی مواد ترمیمی چهت برگزاری سیل، مطالعات میکروسکوپی بر روی ترمیم‌های آمالگام انجام شد. از آن زمان محققین بسیاری چهت تشریح میزان نشت مواد دندانی و بهبود سیل حاشیه‌ای تساه نموده‌اند. Kidd در سال 1976 میکروبیکی را غیر باکتری، ماییت مولکول‌ها یا بیون‌ها بین دبیره‌های طرف و مواد ترمیمی تعیین کرد (۲،۳).

جلگری از میکروبیک در حد فاصل دندان/رستوریشن مهم‌ترین عامل در افزایش طول عمر رستوریشن می‌باشد. میکروبیک ممکن است منجر به تغییر رنگ مارجین‌ها، شکستگی‌های مارجین، ایجاد یوژنات‌های عود‌کننده در حد فاصل دندان/رستوریشن، حساسیت دندان‌های ترمیم‌شده و ایجاد یا پیشرفت مشکلات پاتولوژیک در بال دندان شود (۱).
فشار هوای In-vitro مطالعات سیل لیپای اولین بار در سال 1932 توسط انجام شد. در این کنیک، هوای فشاره در طریق کانال ریشه و اتفاق بال وارد زندان می شود و کمی شدن فشار در حال استاتیک افزایش می شود. سیدسیمیدکسین، آزاد شدن حبابهای هوای آزمایشگاهی در ماریان ریستورین، همیشه در بین فرو رفتن هوای نشان می دهد (1). مزیت این روش آن است که نتایج به صورت کیتی والی بررسی است (Objective). شاخص به تعداد ساختمان دندان نیاز نمی یابد. در نتیجه می توان میکروالیگی را روی یک ترمیم در مدت زمان معین برسی کرد (2).

محدودیت اصلی این روش آن است که کمک به تشخیص هوای لیکیجی را که از کانال مرطوب ادامه دارد. مشخص می کند و گویاقی آزمایشگاهی سیزی و همچنین نظر کلینیکی می تواند در ساختمان دندان سالم نیز قدری میکروالیگی نشان دهد (3).

میزان نفوذ باکتری اولین مطالعه در سال 1939 توسط انجام شد. مورد مطالعه این آزمایش‌ها کاربردی ویژگی‌های زیادی کرده است ولی روشن اصلی، قرار دادن دندان بر روی میکروشک باکتری‌ها و اندام‌های میزان نفوذ باکتری را در محدوده‌ای از عای Unیک می‌باشد. نتایج حاصل از این
مروری بر مقالات میکروکیوکس و روش‌های اندازه‌گیری آن

در محدودی از میکروتپ برقرار داده می‌شود. پس از خارج ساختن دانه‌ها در محدودی تولید شده می‌شود. و سپس سطح مایع و مقدار تولیدان ناحیه ترمیم هدف می‌شود. بردشده روز فلک فتوگرافی قرار می‌گیرند (۳).

اندازه‌گیری این دست‌آمده نشاندهده حضور و موقوفت در از میکروتپ رادیواکتوی است که بین رستوران‌های دیویرازه نفوذ کننده است. به‌طور نتیجه بی‌خواهد می‌شود (۴).

Subjective Scoring (حدودی از ارزیابی می‌شود) (۵).

و هم‌کاران در سال ۱۹۸۵ یک روش Gottlieb را با استفاده از محل قرارگیری اتصال مینا و فیلمی با دو ثابت، دیگران برای غله مشکل بسیاری دارند و Subjective باعث به‌عنوان راهنما برای فنون از میکروتپ نکننده بود.

Subjective Scoring بی‌خوابی و خروج از استفاده از یک استرویکوسکوب برسی گردیده (۴).

بررسی‌های طولانی میکروکیوکس می‌تواند توسط ساکارز رادیواکتوی C14 انجام شود. این تکنیک هم برای دندان معطر است و هم قابل تنظیم به کلینیک نی نیایید (۳).

در محدودی از این دست‌آمده را به Ca15 می‌تواند تابع گیم‌کاله‌نیا را به‌طور داشته باشد: زیرا از میکروتپ نسیب به نفوذ در ساختمان دندان یا میزان ترمیم نامی‌شد دارد که می‌تواند باعث پخش از میکروتپ روی اثراتی را (۳) اندازه‌گیری می‌کنند.

یکاک اصلی مطالعات رشیدی‌ها (Tracers) (۴) روی رادیوارافگراش (۳) استفاده از تکنیک دیتای رادیواکتوی سیب چهار است: زیرا مقداری از این می‌کنند و به‌طور اکتشافات لازم، یا از وسائل خاص در تمام روش‌ها استفاده کرده همچنین این تکنیک بسیار گران و به مشکلاتی که هنگام تفسیر ممكن

آنالیز فعالیت نوترنی آنتاگونیست نوترنی برای مطالعه میکروکیوکس به In-vitro و In-vivo صورت می‌نماید. استفاده می‌شود. در این روش دانه‌های پرسته در محلول آب نیک مونوگنر رادیواکتوی قرار می‌گیرند. سپس همه نمک‌هایی که به سطح خارجی دانه‌ها مشاهده شده می‌شوند و دندان در مرکز یک راکتور مستقیم قرار می‌گیرد. به این ترتیب متفاوت‌های نور رادیواکتوی Mn56 به فرم نمونه، Mn56 به فرم قابل قبول، Mn56 به قابل قبول و راکتورها سطح‌های چپ از این قابل قبول، اندازه‌گیری می‌شود.

در سال ۱۹۷۲ نشان داد که با تکنیک هم‌اکنون این کاهش قابل حساب از این صورت قابل توجه و برجسته شود. محدودیت

ضروری بر مقالات میکروکیوکس و روش‌های اندازه‌گیری آن

در محدودی از میکروتپ برقرار داده می‌شود. پس از خارج ساختن دانه‌ها در محدودی تولید شده می‌شود. و سپس سطح مایع و مقدار تولیدان ناحیه ترمیم هدف می‌شود. بردشده روز فلک فتوگرافی قرار می‌گیرند (۳).

اندازه‌گیری این دست‌آمده نشاندهده حضور و موقوفت در از میکروتپ رادیواکتوی است که بین رستوران‌های دیویرازه نفوذ کننده است. به‌طور نتیجه بی‌خواهد می‌شود (۴).

Subjective Scoring (حدودی از ارزیابی می‌شود) (۵).

و هم‌کاران در سال ۱۹۸۵ یک روش Gottlieb را با استفاده از محل قرارگیری اتصال مینا و فیلمی با دو ثابت، دیگران برای غله مشکل بسیاری دارند و Subjective باعث به‌عنوان راهنما برای فنون از میکروتپ نکننده بود.

Subjective Scoring بی‌خوابی و خروج از استفاده از یک استرویکوسکوب برسی گردیده (۴).

بررسی‌های طولانی میکروکیوکس می‌تواند توسط ساکارز رادیواکتوی C14 انجام شود. این تکنیک هم برای دندان معطر است و هم قابل تنظیم به کلینیک نی نیایید (۳).

در محدودی از این دست‌آمده را به Ca15 می‌تواند تابع گیم‌کاله‌نیا را به‌طور داشته باشد: زیرا از میکروتپ نسیب به نفوذ در ساختمان دندان یا میزان ترمیم نامی‌شد دارد که می‌تواند باعث پخش از میکروتپ روی اثراتی را (۳) اندازه‌گیری می‌کنند.

یکاک اصلی مطالعات رشیدی‌ها (Tracers) (۴) روی رادیوارافگراش (۳) استفاده از تکنیک دیتای رادیواکتوی سیب چهار است: زیرا مقداری از این می‌کنند و به‌طور اکتشافات لازم، یا از وسائل خاص در تمام روش‌ها استفاده کرده همچنین این تکنیک بسیار گران و به مشکلاتی که هنگام تفسیر ممكن
به هدایت الکتریکی

در تکنیک هدایت الکتریکی برق از ارزیابی تغییرات ابتدای در حد فاصل دوپنرهای جریه و دوپنرهای جریه از یک بابل الکتروشیمیایی استفاده می‌شود. این تکنیک در سال ۱۹۷۵ Jacobson و Von Fraunhofer توصیف شد (۲). چون مشاهده‌ای ضریب اتصال حرارتی میان دندان است نتیجه‌ای است از لوله‌های شیشه‌ای به قطر ۴ تا ۵ میلیمتر استفاده می‌شود (تصویر ۱).

کف هر دو نوع الکترود براتیوی است که در این کار استفاده می‌شود. این دو نوع الکترود برون مصرفی در محلول ۱٪ اسید ناکیت قرار می‌گیرد. یک سر الکترود پایین به منبع با انرژی ۵ ولت وصل می‌شود. سر دیگر مدار به یک سری مقاومت الکتریکی ممکن است سپس فضایی بین مواد و نفوذ الکترولیت بر می‌شود (تصویر ۲).

چون بلافاصله پس از قرار دادن ماده ترمیمی، لوله شیشه‌ای در محلول ۱٪ اسید ناکیت قرار می‌گیرد. یک سر الکترود پایین به منبع با انرژی ۵ ولت وصل می‌شود. سر دیگر مدار به یک سری مقاومت الکتریکی ممکن است سپس فضایی بین مواد و نفوذ الکترولیت بر می‌شود (تصویر ۲).

بعضی محققین از دندانهای طبیعی در این تکنیک استفاده می‌کنند؛ اما افرادی که مبتلا به اختلالات ابتدایی لوله‌ای خذف موی، نتایج حاصله نسبت به تکنیک‌های نفوذ زنگ‌یا سفیدی درخت نمی‌توانند است. اصول این روش به صورت است. که یک الکترود درون یک دندان، شیشه‌دان کشیده‌شده، قرار می‌گیرد. به نحوی که یک فاصله‌ای تامس صحیح نماید سپس دندان را کاملاً سیل می‌نمایند. از لیکه‌ی الکتریکی که در دندان طبیعی نیز وجود دارد، جلوگیری شود. بعد دندان را

۷۳
در مورد بر مقالات میکروسکوپیک و روش‌های اندازه‌گیری آن

در ضمن همایش‌هایی قرار می‌دهند و بین دندان و
کلروپاتیک یک تablishment کامپیوتری برقرار می‌شود. لیکون از
طريق اندازه‌گیری تغییر میزان چربی برقرار شده در یک
مقاومت (ترمیم) که بر سر راه کلروپاتیک قرار دارد,
اندازه‌گیری می‌گیرد؛ البته این روش نیازی به
ترمیم‌های قلی مورد استفاده قرار گیرد (1).

آسکن میکروسکوپ الکترونی (SEM)

استفاده از آن تکنیک بهدلیل برگچه‌بانی و عمق میدان
دید بالا امکان مشاهده‌ی کم‌وسیم را برخوردار می‌سازد.
این تکنیک حذفی به دندان‌های کشیده شده است. تکنیک
به دلیل خشک کرد نمودن، ترک و تغییر شکل، SEM
پتانسیل ایجاد خطا می‌کند و به همین دلیل تکنیک
بهره‌مند است از Replica برای استفاده از SEM.

پسر باری این روش از دندان بر روی Replica
سیلیکون نیز داده‌ی قابلیتی می‌شود؛ داخل قالب با
ایپسیون ذرات گرد بسته تحت شرایط خالی پر می‌شود و به
مدت 28 ساعت در حرارت 50 درجه سانتی‌گراد قرار
می‌گیرد؛ سپس به منظور انتقال الکتروکی سطح نمونه‌ها با
فلز پوششی می‌شود. پس از نصب در طی یک عمل
نمونه‌ها دوب تشویش (2).

این عمل اجرا بر پایه‌ی تغییر اندازه ناقص‌یاری‌ها را
فرآیند می‌کند. Replica می‌تواند در فواصل زمانی مشخص
بررسی شود؛ بدون این که تغییری در ساختمان مورد مطالعه
ایجاد شود. با استفاده از این روش از انقباض نمونه و یا سایر
مشکلاتی که هنگام تهیه بافت پلیمری برای بررسی
می‌مکن است رخ دهد، جلوگیری می‌شود. این تکنیک SEM
محدود به نشان‌دادن ناقص‌مارین منیشته و تابی به
صورت کمی مشکل یافت می‌شود. این تکنیک به
مشخص کردن ناقص‌مارینال و ترک‌های ایجادشده در

پوسیدگی‌های مصنوعی

ضایعات پوسیدگی‌های مصنوعی، شبه پوسیدگی‌های ثانویه
در مطالعات با استفاده از کشت باکتریا یا سپهر
شیمیایی (تکنیک زل اسید) ایجاد می‌شود. اولین تحقیق
برای تولید ضایعه شبه پوسیدگی با استفاده از زل اسید
توسط Muhlemann در سال 1963 انجام شد. ضایعات
ایجاد شده توسط این تکنیک با نور بالارهی بررسی شدند و
دو قسمت شامل یک ضایعه خارجی و یک ضایعه در دیواره
حفیر توصیف شدند. ابتدا ضایعات خارجی در محل تأسیس
اولیه می‌باشند. ایجاد می‌شوندد در حالی که ضایعات
دیواره‌های در مرحله بعد توسط میکروسکوپیک بین‌ها از ذل
اسیدی، اطراف رستورشین شکل می‌گرفتند (8).

در سال 1967 از رستورشین شکل Brown
در سال 1984 از ایک تکنیک
باکتری‌های ایجاد پوسیدگی ثانویه مصنوعی در حدا
رستورشین و دندان استفاده کردن (9)
با استفاده از این
تکنیک Wiesent گام‌پذیری در خطره‌ی جدیر
ترمیم رزین کامپوزیت را تعمیم کردن (10).

تاریخ حاصل از این روش به صورت کمی بین می‌شود.
درجه دمای‌الزالسینون در صورت کمی به نیمه کمی
پایان می‌شود. این تکنیک (Semi Quantitative)
وسیله‌ای ارزش‌مند برای ایجاد پوسیدگی مصنوعی است که
مزایای این روش عبارتند از:
- اندام‌های گریزت به صورت Objective است.
- جوی اقلای‌های دست‌آمده، کمی است، استفاده از آن‌البیراسی برای سامان‌های استاد.
- رنگ محلول نقره به اندازه ذرات تفنشی شده بستگی دارد و می‌تواند به رنگ سیاه، آبی، زرد، خاکستری یا قهوه‌ای باشد. مطالعات ردیابی‌های شیمیایی از نظر مشکلات و تفسیر نتایج مشابه مطالعات لیکی در کنار استفاده از نمک‌های نقره همراه با محلول‌های فتوگرافیک نسبت به تکنیک نفوذپذیری رنگ در مطالعات میکرولیک در رده‌های قرار دارند (1).

رنگ‌ها
یکی از قدیمی‌ترین و رایج‌ترین روش‌های بررسی میکرولیک به صورت In-vitro استفاده از رنگ‌های آلی در Tomes در سال 1874 از رنگ آبی و سال 1875 از رنگ لباس در مطالعات میکرولیک استفاده کرده (2).

این تکنیک به صورت In-vitro روی دندان‌های کشیده شده، انجام می‌شود. پس از ایجاد حفره و انجام ترمیم، نواحی ترمیم‌شده، توس‌تاری و پوشش‌بندی می‌شود و نمونه‌ها در محلول رنگ قرار داده می‌شود. پس از مدت زمان معین نمونه‌ها شسته و قیل از مماینه برش داده می‌شوند. موروع بر مقادیر متغیر شده نشان می‌دهد که انواع گسترده‌ای از رنگ‌ها به شکل محلول با ذرات معلق در اندام‌های مختلف از این مطالعات مورد استفاده قرار گرفته‌اند. قطب‌های موارد رنگ موش از 5/0 تا 7/0% و زمان قرارگیری نمونه‌ها در این محلول‌ها بین 4 تا 22 ساعت با پشتیبانی بوده است (جدول 1). (2).

با بررسی میکروادیوگرافی ای نور پلازما از ضایعه طبیعی قابل تشخیص می‌شود. این تکنیک دارای مزایای معنی‌داری می‌باشد در این روش عوامل داخل‌الگره مثل میکروفور و مواد غذایی که در پوسیدگی طبیعی دخالت دارند حذف و در مدت زمان کوتاهی ضایعه پوسیدگی ایجاد می‌شود. از طرف دیگر وسیله‌ای زیل مشابه یک لایه از بلاک است. در سیستم پوسیدگی‌ها مصنوعی، میزان سطح در معرض حمله دامی بیشتر هیدروژن قرار دارد. در حالی که زن به عنوان سند جهت جلوگیری از انتشار در برابر تجزیه معدنی عمل می‌کند؛ به عبارت دیگر میزان تحلیل معنی‌دار قابل کنترل است (2).

ردیابی‌های شیمیایی
تنکیک دیگری را برای بررسی میکرولیک توصیف کرده. با قرارگیری نمونه‌ها رستورش آکریلی در محلول سولفید باریم، مارینی که تغییر رنگ لیکی را نشان می‌دهد (11.2).

استفاده از نیترات نقره برای بررسی میکرولیک جزو روشهای پذیرشگری‌شده می‌باشد. به هر حال به دلیل این که اندازه یون نقره (5/90 نانومتر) در مقایسه با اندازه تبیک باکتری (50-500 نانومتر) بسیار کوچک می‌باشد، سیال نفوذ در حیال پیشتر است. بنابراین می‌توان توجه گرفت مر ترمیمی‌ها که از لیکی نقره یون نقره جلوگیری کند، هم‌اکنون نسبت به لیکی باکتری‌های غیر قابل نفوذ است (11.2).

معمولاً محلول 50% نیترات نقره یک محلول (Hydroquinone) بنزن 1, 4-Diol فتوگرافیک مثل In-vitro واکنش داده است. جهت مطالعه استفاده می‌شود In-vitro تعدادی از محققین کلید نقره 1/10 را پیشنهاد کرده‌اند. این تکنیک اختلاف رنگ (Contrast) بسیار بالا را در حد فاصل عاج و ترمیم نشان می‌دهد.
<table>
<thead>
<tr>
<th>Investigators</th>
<th>Dye Used</th>
<th>Concentration of Dye (%)</th>
<th>Time of Immersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirsch & Weinreb (1958)</td>
<td>Aniline blue</td>
<td>2</td>
<td>72 hours</td>
</tr>
<tr>
<td>Going & others (1960b)</td>
<td>Crystal violet</td>
<td>--</td>
<td>24 hours</td>
</tr>
<tr>
<td>Christen & Mitchell (1966)</td>
<td>Fluorescein</td>
<td>2</td>
<td>5-12 minutes</td>
</tr>
<tr>
<td>Grieve & Parkholm (1973)</td>
<td>Eosin</td>
<td>5</td>
<td>48 hours</td>
</tr>
<tr>
<td>Sanders & Dooley (1974)</td>
<td>Methylene blue</td>
<td>0.5</td>
<td>30 hours</td>
</tr>
<tr>
<td>Barry & Friedl (1975)</td>
<td>Methylene blue</td>
<td>2</td>
<td>2, 4, 8, or 16 days</td>
</tr>
<tr>
<td>Al-Hammadani & Crabb (1975)</td>
<td>Aelion blue</td>
<td>2</td>
<td>72 hours</td>
</tr>
<tr>
<td>Fogel (1977)</td>
<td>Methylene blue</td>
<td>0.25</td>
<td>1 day, 1 week, & 1 month</td>
</tr>
<tr>
<td>Crim & Mattingly (1981)</td>
<td>Basic Fuchsin</td>
<td>0.5</td>
<td>25 hours</td>
</tr>
<tr>
<td>Kwan & Harrington (1981)</td>
<td>India ink</td>
<td>--</td>
<td>24 hours</td>
</tr>
<tr>
<td>Camp & Todd (1983)</td>
<td>Rhodamine B</td>
<td>--</td>
<td>60 hours</td>
</tr>
<tr>
<td>Alperstein & others (1983)</td>
<td>Fluorescein</td>
<td>20</td>
<td>1 hour</td>
</tr>
<tr>
<td>O'Neil & others (1983)</td>
<td>India ink</td>
<td>--</td>
<td>24 hours</td>
</tr>
<tr>
<td>Tagger & others (1983)</td>
<td>Procion</td>
<td>1</td>
<td>4 days</td>
</tr>
<tr>
<td>Michanowicz & Czontkowski (1984)</td>
<td>Methylene blue</td>
<td>5</td>
<td>7 days</td>
</tr>
<tr>
<td>Munksgaard & others (1985)</td>
<td>Erythrosin</td>
<td>9</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Jacobsen & others (1985)</td>
<td>Methylene blue</td>
<td>1</td>
<td>72 hours</td>
</tr>
<tr>
<td>Crim & others (1985b)</td>
<td>Basic Fuchsin</td>
<td>0.5</td>
<td>24 hours</td>
</tr>
<tr>
<td>El-Deeb (1985)</td>
<td>Methylene blue</td>
<td>2</td>
<td>48 hours</td>
</tr>
<tr>
<td>Ben Amar & others (1985)</td>
<td>Basic Fuchsin</td>
<td>0.5</td>
<td>14 days</td>
</tr>
<tr>
<td>Crim & Chapman (1986)</td>
<td>Basic Fuchsin</td>
<td>--</td>
<td>24 hours</td>
</tr>
<tr>
<td>Zidán & others (1987)</td>
<td>Basic Fuchsin</td>
<td>0.5</td>
<td>60 seconds</td>
</tr>
<tr>
<td>Glyn Jones & others (1988)</td>
<td>Eosin</td>
<td>4</td>
<td>48 hours</td>
</tr>
<tr>
<td>Callis & Paterson (1988)</td>
<td>Procion blue</td>
<td>1</td>
<td>1 week</td>
</tr>
<tr>
<td>Spangberg & others (1989)</td>
<td>Methylene blue</td>
<td>2</td>
<td>7 days</td>
</tr>
<tr>
<td>Youngson & others (1990)</td>
<td>Eosin</td>
<td>5</td>
<td>48 hours</td>
</tr>
<tr>
<td>Mathis & others (1990)</td>
<td>Methylene blue</td>
<td>0.5</td>
<td>17 hours</td>
</tr>
<tr>
<td>Cuiocchi & others (1990)</td>
<td>Blue cresyl</td>
<td>0.5</td>
<td>48 hours</td>
</tr>
<tr>
<td>Arecia & others (1991)</td>
<td>Methylene blue</td>
<td>0.5</td>
<td>24 hours</td>
</tr>
<tr>
<td>Saunders & others (1991)</td>
<td>Black india ink</td>
<td>--</td>
<td>14 days</td>
</tr>
<tr>
<td>Brackett & others (1995)</td>
<td>Methylene blue</td>
<td>10</td>
<td>4 hours</td>
</tr>
</tbody>
</table>
مقدار آنیلین پلو در محیط قلیایی مثل زبانی که کلسیم هیدروکسید به عنوا ناپیوست مقدار استفاده قرار می‌گیرد، حل می‌شود (۱).

اثر تروموساپینگ را می‌کریولیکی
و همکاران در سال ۱۹۵۲ احتمالاً اولین Nelsen کسانی بودند که نشان دادند تغییرات حسی روی نفوذ مارژن مؤثر است. این مطالعه به دلیل تفاوت در ضریب انسداد و کنترل حرارتی بافت‌های دندان و رسته‌میش است. همچنین انسداد حسی می‌تواند در شکاف‌های بین دندان و رسته‌میش نیز در این زمینه دخیل هستند.

در سال ۱۹۶۷ در مطالعه کود خونِ تیجه Kidd گرفت که در مطالعات میکروپریلیک‌ها حساسیت این چگال داشته بودند. به‌طور کلی مطالعات بیشتر نشان دادند که برداشت شدن هوا به دام اتفاق افتاد، رنگ‌دانی در این روش بیشتر استفاده می‌شود. فوشین پراست، این رنگ‌دانی جهت پژوهش پروپیدگی‌ها استفاده است (۲).

درجه حرارت‌هایی که آنها جهت تروموساپینگ در مطالعات می‌شود. در صورت این تحقیق، درجه حرارت‌هایی ۴۵ درجه سانتی‌گراد برای تروموساپینگ استفاده کردن. این دو تحقیق بر اساس مطالعات In-vitro استفاده یافته‌اند که با استفاده از ترمولکس درجه حرارت نورشیدن‌های سود و گرم را روي سطح دندان مشخص کردن دی‌گر دو درجه حرارت‌هایی ۱۰ و ۵۵ درجه سانتی‌گراد می‌شود. در صورت یافته‌استفاده کردن (۱۴).

درجه نگهداری جهت مطالعه استفاده کردن. درصد زمان گول‌هار می‌تواند از آب سرد و گرم. درصد ۱۰ و ۵۰ تهیه بوده است. Causton، ۲۰۰۸، ۲۰۰۰، ۲۰۰۱، ۲۰۰۰، ۲۰۰۰ و ۲۰۰۰ تهیه بوده است. نشان داده که در چه نمونه کمتر در محلول بناده، از نظر کلینیکی حقیقی‌تر است. این مدت زمان ۱۵ ثانیه را توصیه می‌کند.

استفاده از رنگ‌های فلورسنت پیک از تکنیک‌های مبینی و میادین. در این رنگ‌های رنگ‌دانی رقیق هم‌چنین تخصص هستند. گران و سیمی نیستند و در مطالعات قابل استفاده In-vivo هستند.

در تکنیک‌های مبینی از موارد رنگ‌دانی استفاده می‌شود. نیاز به استفاده از مودال شیمیایی گوناگون و همچنین اشتهای رادیولوژی خطرناکی نمی‌باشد. این روش از نظر انجام روش بسیار حساس است. برای دستیابی به انجام آزمایش نیاز به اندازه‌گیری دقیق، اجرای آزمایش امکان‌پذیر است و استفاده بودن مقدماتی سنجش دارد.

در سال ۱۹۷۶ نشان داد که قرار دانه نمونه‌ها Roulet در خلا قابل قرار گرفتن در رنگ‌های میزان نفوذ رنگ را در طول مارژن‌ها اثربخش می‌دهد. این مطالعه به دلیل برداشت شدن رنگ‌های به دام اتفاق افتاد، رنگ‌دانی در این روش بیشتر استفاده می‌شود. فوشین پراست، این رنگ‌دانی جهت پژوهش پروپیدگی‌ها استفاده است (۱).

بعضی از رنگ‌های مثل فوشین پراست، باعث پوشیده‌بندی می‌شوند. رنگ‌های که به دانه‌ها با ساختار رنگ‌دانی‌ها وجود Gap نمی‌دارد، بهتر از آنچه که یافته با استفاده Gap مول دندان تیپیلی درست کنن. در مقایسه نفوذ Gap نگ‌چنان نمونه‌ها جهت نگهداری کار تغییر می‌شوند. از رنگ‌دانی که به طور کامل امکان‌پذیر نیست.

نفوذ‌پذیری عاج عامل دیگری است که در نظر گرفته می‌شود. در مطالعات میکروپریلیکی روز عاج درختی از رنگ‌دانی عاج مشاهده شده که از میکروپریلیک‌ها واقع متفاوت است (۳).

رنگ‌های مورد استفاده در این تکنیک با پایداری تابی پوشش باشند و تحت شرایط مختلف شستشو و پشتیبانی نشون‌دهد.
در ترموساکلینگ، نمودارها با تیم ۲۲ ساعت قبل، در آب ۲۷ درجه سانتی‌گراد قرار گرفتند سپس با تیم ۵۰ درجه سانتی‌گراد قرار داده شدند.

مدت توقف در حرارت حداکثر ۲۰ ثانیه بود و مدت زمان انتقال از یک حمام به حرارت دیگر ۰ تا ۵ ثانیه می‌باشد (۲۳).

کردن؛ اما همکاران وی نشان دادند که مقدار نفوذ Crim و همکاران در حمام و در حمام‌های سرد و گرم مسئول است (۱۵).

در مطالعات میکروبیلیک، سوخت ماده ترمیمی و رسانا بودن آن از نظر هدایت حرارتی مهم است. وقتی دندان‌ها کامپوزیت با کمپوزیت بر می‌شود و با فاصله‌های تحت تنشهای حرارتی قرار می‌گیرد، نسبت به زمانی که قبل از انجام تست‌ها در آب نگهداری می‌شود، نفوذ رنگ برخی از نشان می‌دهد. این سنگال به حاصل جنب آب زیستی کامپوزیت نسبت داده می‌شود. بنابراین توصیه می‌شود در تست‌های میکروبیلیک روی ترموساکلین نمودن نوبت قبل از انجام تست‌های حرارتی ۲۴ ساعت در آب نگهداری شوند (۱۸، ۱۷، ۱۶).

تعداد سیکل‌های حرارتی که در این تست‌ها به کار می‌رود از ۱ تا ۲۵۰ می‌باشد (۱۹)؛ اما همکاران تعداد ۲۷۵ سیکل را (۶ نتایج در ۱۰ حطم) مطرح کردند (۲۰). در بررسی روی مواد ترمیمی زیستی مشخص شده است که با افزایش تعداد سیکل‌های میکروبیلیک نیز افزایش می‌یابد.

میرزی و همکاران وی نشان دادند که تعداد ۲۵۰ و ۱۰۰۰ سیکل حرارتی روی میکروبیلیک کامپوزیت‌ها معنی‌دار نبوده است (۲۱). در مطالعه نزدیک تحقیق خود بین ۱۰۰ و ۱۵۰ سیکل حرارتی اختلاف معنی‌داری مشاهده نکردند؛ همچنین بایان نمودند که تنشهای حرارتی در تولید میکروبیلیک سریع عمل می‌کند (۲۲).

برخی مطالعات ترموساکلینگ در حمام‌های آب و بخار استفاده در محلول‌های رنگی انجام شده است. تحقیقات نشان داده که تعقیب نفوذ رنگ در هر دو روش مشابه است (۱۷).

طبق استاندارد ISO/ TR ۱۱۴۰۵ جهت تست‌های

در Cyclic Loading بر روی میکروبیلیک

در سال ۱۹۷۱، جورگسن در مطالعه مکانیکی در محیط دهان که ممکن است فشارهای غیرمتناسب روی ترموساکلین وارد کنند و از نفود مکانیکی (Mechanical Percolation) یا حفره بزرگ و بی شکشه تنش دندان‌ها که در مطالعات ایلات باعث شده است که به تنش‌های اکتالی و شوکهای حرارتی قرار گیرند (۲۴).

سرعت جوی نهایی به طور متوسط ۷۰ تا ۸۰ سیکل در دقیقه (Maximum Bite Force) است. حداکثر نرخی مشاهده شده است که در حاصل دندان‌های قانالی و خلیق متناوب است و با افزایش در نازک دندان‌ها کاهش می‌یابد. نرخی که به طور متوسط به دندان‌های ترموساکلین می‌شود وارد می‌شود ۲۵۰ نیوتون است (۲۵).

مطالعات دبیر نشان داده است که نروهای میکروبیلیک در مطالعات ترمیم (Cyclic Loading) همچنین در مطالعات Prati و ماریجینال تارد. در سال ۱۹۹۴ نشان داد که نزوکهای حشراتی و نشان‌های اکتالی، میکروبیلیک رسترهای رنگی را افزایش نمی‌دهند (۳).
جهت بررسی اثر تنشهای فاکللشال روی Qvist توسط Integrity انجام شد. نتایج نشان داد که فاکللشان مضیف اثر مشخصی روی اقدام مارچنت لیکی دارد؛ بنابراین بهبود شد که تشتهای فاکللشال می‌توانند عامل ایجاد میکرولیکج استفاده کرد و تفسیر نتایج نیز بسیار حساس است (۲). محدودیت بزرگ روش اآلاین فاکللشال توانسته گرایی مشکل بوده و به‌ویژه نهایت رازدانی مشابه (1) روش‌های الکتروکم جهت ترمیم‌های فلز قابل استفاده نیست و تکنیک پوسیدگی‌های مصنوعی در ترمیم‌های که شامل تکنیک اسیدسازی می‌باشد، مناسب نیست (8). مطالعات ریدیمینی شیمیایی از نظر مشکلات و تفسیر نتایج مشابه مطالعات لیکی‌گری در داشته و مطالعات میکرولیکج در دیدگاه دور دارد (۱). اشکال‌الصلی مطالعات ریدیمینی (نگ‌های رادیوپوزوتوب) بودن نتایج است؛ چون وضعیت لیکی افقی انتقاد وابسته به صفحه‌ای است که نموده به مرحله داده شده است (۲).

به‌طور مزایا و معایب روش‌های مختلف، همیک یک از روشهای مطرح شده ایدهآل است؛ چون تا پیش‌تر روش که به دلیل سادگی و سهولت دسترسی در تحقیقات استفاده شده، روش‌های بوده است که این به تحقیقات مختلف از روش‌های مختلف استفاده شده است. مطالعات میکرولیکج هم به صورت In-vitro و هم به صورت In-vivo قبل انجام است. ولی بیشتر تحقیقات به In-vitro صورت می‌گیرند (1).
جدول ۲- خلاصه نتایج و محدودیت‌های روش‌های مختلف تعیین میکرولاکیج

<table>
<thead>
<tr>
<th>گروه</th>
<th>تحقیقگران</th>
<th>مزایا</th>
<th>پیچیدگی</th>
</tr>
</thead>
</table>
| رنگ | Goings (1972) Crisp & Wilson (1980) | ۱) قابل شناسایی در توزیع کonzentra| ۱) نتایج ارزیابی نسبی\n
| ترکیب شیمی | Wu & others (1983) Crim (1987) | ۱) ساده\n
| ترکیب شیمی ضوایری | Goins (1964) Alleni (1990) | ۱) شناسایی میزان لکه‌دار

| ترکیب شیمی جوش‌سازی | Fayyad & Ball (1987) | ۱) نوعی که در علت کلینیک مرتبط

| ترکیب هوایی نیرویی | Müller & others (1983) Taylor & Lynch (1991) | ۱) نتایج قابل اندازه‌گیری\n

منابع:

3rd Conference of Bahrain Dental Society, 1st Conference of Secretarial General of the Council of Dental Societies for the GCC

Title:
3rd Conference of Bahrain Dental Society, 1st Conference of Secretarial General of the Council of Dental Societies for the GCC

Date:

City:
Manama

Country:
Bahrain

Contact:
Dr. Mohammed Al-Jishi

Phone:
00-973-723-767

Fax:
00-973-729-616

E-Mail:
bahds@batelco.com.bh

Evidence-Based Dentistry

Title:
Evidence-Based Dentistry

Date:
February 03, 2003 - February 07, 2003

City:
Oxford

State/Province:
England

Country:
United Kingdom

Contact:
Course Administrator

Phone:
00-44-0-1-865-286-947

Fax:
00-44-0-1-865-286-934

E-Mail:
cpdhealth@conted.ox.ac.uk

Arthroscopic Surgery of the Temporomandibular Joint

Title:
Arthroscopic Surgery of the Temporomandibular Joint

Date:
February 17, 2003 - February 19, 2003

City:
Vienna

Country:
Austria

Contact:
Prof. Dr. Dr. Gerhard Undt

Phone:
43-1-404-004-259

Fax:
43-1-404-004-253

E-Mail:
gerhard.undt@akh-wien.ac.at

Computer Assisted Surgery Around the Head: Basic Research and Clinical Applications of CAS in ORL, Maxillo-Facial, Reconstructive and Dental Surgery

Title:
Computer Assisted Surgery Around the Head: Basic Research and Clinical Applications of CAS in ORL, Maxillo-Facial, Reconstructive and Dental Surgery

Date:

City:
Interlaken

Country:
Switzerland

Contact:
Dr M Caversaccio

Phone:
41-336-324-174

Fax:
413-363-234-516

E-Mail:
marco.caversaccio@insel.ch
Title: Pacific Dental Conference at Vancouver
Date: March 06, 2003 - March 08, 2003
City: Vancouver
State/Province: BC
Country: Canada
Contact: Ms. Marilynnne Webster
Phone: 604-714-5303
Fax: 604-736-3645
E-Mail: marilyn@cdsbc.org

Title: 2nd International Conference on New Biomedical Materials
Date: April 05, 2003 - April 08, 2003
City: Cardiff
State/Province: Wales
Country: United Kingdom
Contact: P.I. Haris
Phone: 00-44-1-162-506-306
Fax: 00-44-1-162-577-287
E-Mail: pharis@dmu.ac.uk

Title: 25th Asia-Pacific Dental Congress
Date: April 24, 2003 - April 28, 2003
City: Manila
Country: Philippines
Contact: Dr Diampo Lim
Phone: 63-27-358-538
Fax: 63-27-358-538

Title: Laser Congress 2003 Florence - ESOLA / SILO
Date: May 15, 2003 - May 18, 2003
City: Florence
Country: Italy
Contact: Vienna Medical Academy, att. Hedwig Schulz
Phone: 43-14-051-383 ext 10
Fax: 43-14-051-383 ext 23
E-Mail: h.schulz@medacad.org