Title: Designing, preparing and evaluation of novel HA/Ti composite coating for endodontic dental implant

Authors: Fathi MH. Assistant Professor*, Mortazavi V. Associate Professor**, Moosavi SB. Associate Professor***

Address: *Dept. of Materials Engineering, Isfahan University of Technology
**Dept. of Operative Dentistry, Faculty of Dentistry, Isfahan University of Medical Sciences
***Dept. of Endodontics, Faculty of Dentistry, Isfahan University of Medical Sciences

Abstract: Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including; improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration simultaneously. Stainless steel 316L (SS), cobalt-chromium alloy (Vit) and commercial pure titanium (cpTi) were chosen as metallic substrates and hydroxyapatite coating (HAC) were performed by plasma-spraying (PS) process on three different substrates. A novel double layer Hydroxyapatite/Titanium (HA/Ti) composite coating composed of a HA top layer and a Ti under layer was prepared using PS and physical vapor deposition (PVD) process respectively on SS. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure, morphology and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens behavior as an indication of biocompatibility. Results indicated that the cpTi possesses the highest and SS the lowest corrosion resistance (highest corrosion current density) between uncoated substrates. This trend was independent to the type of physiological environment. The HA coating decreased the corrosion current density of HA coated metallic implants but did not change that trend. HAC acted as a mechanical barrier on the metallic substrate but could not prevent the interaction between metallic substrate and environment completely. The HA/Ti composite coating improved the corrosion behavior of SS. The corrosion current density of HA/Ti coated SS decreased and was exactly similar to single HA coated cpTi in physiological solutions. The results indicated that HA/Ti composite coated SS could be used as an endodontic implant and two goals including improvement of corrosion resistance (biocompatibility) and bone osseointegration could be obtained simultaneously.

Key words: Hydroxyapatite Coating- HA/Ti Composite coating- Corrosion Behavior- Stainless steel 316L- Endodontic Implant

Journal of Dentistry. Tehran University of Medical Sciences (Vol. 15, No.3, 2002)
چکیده

ایمپلنت‌های دندانی امروزه به عنوان روشی جهت جایگزینی دندان‌هایی از دست رفته، رواجی روزافزونی یافته‌اند. در این راستا در جهت بهبود خواص این ایمپلنت‌ها و ارتقاء مناسب‌سازی با استخوان در گردشگری ایمپلنت‌های فلزی و تأمین سازگاری زیستی مطابق با یکسانی و همبستگی با استخوان، تأمین پوسته و کاهش زمان درمان از سوی دیگر انجام شد. فولاد زنگنزن ۳۱۶ آل، ال‌پی کالنت - گرم - مولبدن (واکسینوم) و تیتابوم خالص تجاری، به عنوان زیرایلی افتخار ایمپلنت انتخاب گردید و هیدروکسی آپاتیت با تکنیک پلاستیک بر روی آنها کهیش داده شد؛ سپس پوشش نوین کامپوزیت هیدروکسی آپاتیت - تیتابوم طراحی و تهیه گردید؛ به همین منظور، پوشش هیدروکسی آپاتیت پاشش بلاسامیای شده بر روی تیتابوم رسوپ فیزیکی بخار شده که در زیرایلی فولاد زنگنزن قرار گرفته بود، نشانه‌نشد. مشخصه‌هایی از ویژگی‌های پوشش نوین کامپوزیت هیدروکسی آپاتیت - تیتابوم، با استفاده از تکنیک‌های بررسی پتروپنصه (EDX) و تکنیک‌های توزیع انرژی پتروپنصه (SEM) و نورسیگنوم (ERD) و میکروسکوپ الکترونی روانی (XRD) و طبقه‌بندی توزیع انرژی پتروپنصه (SEM) و نورسیگنوم (ERD) و میکروسکوپ الکترونی روانی (XRD) بهبود خواص این ایمپلنت‌ها دیده شد که در ذیل توضیح شده‌است.

خودراک ایمپلنت‌های بدون پوشش و با پوشش با اجرای آزمون‌های الکترونی ایمپلنت‌های آپاتیت گردیده تا اثر تأثیر پوششها بر رفتار خودراک ایمپلنت به عنوان شاخه اساسی سازگاری زیستی تعیین شود. تا قبل از نشان داد که در ذیل توضیح شده‌است.

پوشش نوین کامپوزیت به عنوان پوشش نوین در جهت بهبود خواص این ایمپلنت‌ها و ارتقاء مناسب‌سازی با استخوان در گردشگری ایمپلنت‌های فلزی و تیتابوم طراحی و تهیه گردید.

کلید واژه‌ها: پوشش هیدروکسی آپاتیت - پوشش نوین کامپوزیت - تیتابوم - رفتار خودراک - فولاد زنگنزن - ادوات ایمپلنت

مجله دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران (دوره ۱۵، شماره ۳، سال ۱۳۸۱)
مجله دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران

دوره ۱۵ شماره ۳ سال ۱۳۸۱

متوالی کردن فلزات مصرفی در دندانپزشکی ممکن است در بدن در معرض فرآیند خوردگی (Corrosion) قرار گیرد و پیامدی مسمومی را به دنبال داشته باشد. بنابراین به منظور استفاده از فلزات و آلیاژ‌ها ضروری است که سازگاری زیستی آنها بررسی و مطالعه شود (۱).

۱. نمودار مصرفی و تغییرات آن در بدن

قابلیت انتقال این مواد به درون بدن می‌تواند سبب تأخیر در فرد شود. در این مقاله، از خوردن آب‌های مقداری بی‌بی‌نا از (H2O2) توسط سلول‌های ماتور و آماس و تجزیه آن از طریق تشکیل یک رادیکال هیدروکبکسیل بیش در بدن و درآمدهای

۲. در حقیقت، اهمیت بیولوژیک آزادشدن نهایی و نگرانی از حساسیت‌زایی تأثیرات سطح و سرطان‌زایی و ضایعات بافت و اندازه‌ها، علت اصلی توجه به فرآیند خوردگی است و به همین سبب از آزمون‌های ایمپلنت‌های فلزی و بیوتکنولوژی مصرفی در بدن، طی سال‌ها صورت گرفته است (۲). در همین راستا، از تکنیک‌ها و روش‌های مختلف آزمون‌های آزمایشگاهی و کلینیکی برای ارزیابی خوردگی استفاده‌شده است (۳-۱۲). همچنین تأثیر محیط‌های متغیر در خوردگی فلزات زنگنیت ایمپلنت (۱۲-۱۳)، نیاز است. از انتخاب واکنش‌های زیستی شتابشده است و فلزات به خوب و سازگاری زیستی عالی برخوردار می‌باشند. نیکل به عنوان یک فلز حساسیت‌زا شناخته شده است و آخرین با آن فلز می‌تواند منجر به ایجاد واکنش آنزیمی گردید (۵).

۳. در این سیستم ایمپلنت نیز، به لحاظ فیزیولوژیکی در سلول‌های عصبی وجود دارد که می‌تواند منجر به اسپاسم و تغییرات فیزیولوژیکی از جمله:

الف- فرآیند خوردگی که در محیط ازبین می‌روید.

ب- ایمنیت فلزی و از بین رفتن اثرات ایجاد‌کننده از باعث تأخیر بی‌بی‌نا می‌شود. باعث اگزه نکردن و استفاده از روکش‌های الکتروشیمیایی و توسط پلاستیک‌سازی پتاسپودینامیکی در محلول‌های فیزیولوژیکی همراه می‌باشد. یکی از این واکنش‌ها، واکنش خوردگی است (۱۵-۲۳).

۴. امکان ایمپلنت‌های فلزی و ارائه سازگاری زیستی فلزات و آلیاژ‌ها با استفاده از علم و تحقیقات پژوهشی بر روی سطح فلز و برای کمک ارائه فلزات و ایمپلنت‌های فلزی و ارائه سازگاری زیستی فلزات و آلیاژها با استفاده از علم و تحقیقات (Surface Engineering) قرار گیرد و پیامدهایی را به دنبال داشته باشد. به منظور استفاده از فلزات و آلیاژ‌ها ضروری است که سازگاری زیستی آنها بررسی و مطالعه شود (۱).

۵. سیستم ایمپلنت نیز به لحاظ فیزیولوژیکی در سلول‌های عصبی وجود دارد که می‌تواند منجر به اسپاسم و تغییرات فیزیولوژیکی از جمله:
در ترییکی رشد استخوان و تثبیت بیولوژیکی نشان داد که اگرچه پوشش هیدروکسی آپاتیت رفتار خورشیدی فلز اندوپلیمانت (آلیاژ اولونوم) و آلیاژ تکنیک (316 ال) را بهبود می‌بخشد ولی به دلیل داشتن ریزترک‌ها قادر نیست به طور کامل از بره‌کشی بانده بازیرایی فلز مانند نیاپ (30.73/86.78) و همین امر امکان بروز پیده خورشیدی و از آزادی بیاورد را در فاصله ساخته‌شده و تحرکی و تهاب بافته ساده است (32).

در پژوهش حاضر تلاش شده است تا به طور همزمان برای دستیابی به دو هدف بهبود مقاومت خورشیدی ایمپلنت و کاهش آزادی بیاورد و در نتیجه، افزایش سازگاری زستی از بیکس و همیندی با استخوان ترییکی رشد استخوان، تاکید پوست زیرین بین ایمپلنت و بانده تثبیت ایمپلنت و کاهش تهاب بهبود درمان است (30، 31).

سلسله پژوهش‌های اخیر نگارگان، نشان داد که پوشش هیدروکسی آپاتیت پوستی قادر است همیندی با استخوان و ترییکی رشد استخوان اطراف اندوپلیمانت‌های فلزی با پوشش هیدروکسی آپاتیت را فراهم سازد (32). مشاهدات کلینیکی این پژوهش‌ها در روز خویان‌ها، نشان داد که اندوپلیمانت‌های پوشش هیدروکسی آپاتیت در مقایسه با نمونه‌های بدون پوشش ترییکی رشد استخوان بهتری دارد. ایجاد می‌کند (32) و نوع زیرین‌های فلزی اندوپلیمانت (آلیاژ و اولونوم) یا آلیاژ فولاذ نگاش 316 ال) تأثیر قابل توجهی
روش بررسی

مواد زیر لایه سه نوع آلبان فلزی با درجه زبسته-پزشکی به عنوان ماده زیرلایه ایمبلنت (Biomedical Grade) برای تهیه نمونه‌ها مورد استفاده قرار گرفت. برای تهیه و آماده‌سازی نمونه‌های تحت آزمایشگاهی، از فولاد زنگنه‌سیبی استفاده کرد. مدل‌های 7/16 کُم، 17/16 کُم و 13/16 کُم مواد مورد نظر به‌صورت ترکیبی بر روی لایه تیتانیوم پوشش داده شد.

نمونه‌هایی از آلبان کیلت-کام-مولیبدن به اباد. 8×10-1 میلی‌متر با استفاده از شش آلبان وایت‌ایلام و به (Investment Casting) کمک کننده ریخته و دوگانه مکمل تکنیک ریخته‌گری دوگانه (Lost Wax Molding) مکمل تکنیک ریخته‌گری مکمل مورد نظر تهیه و آماده گردید. شمش آلبان وایت‌ایلام در کنار سیستم ذوب شد و پس از کنترل دوچرخه حرارت مذاب، دوگانه در قالب با تکنیک ریخته‌گری کریز از مرکز صورت شناخته شد. تعدادی از نمونه‌ها بدون پوشش حفظ گردیدند و تعدادی نیز پس از آماده‌سازی سطحی به کمک ساقچی‌بانی، با استفاده از تکنیک پاشش پلاستیکی با پوششی در جنس هیدروکسی الیتیت به ضخامت 40 تا 60 میکرومتر پوشش داده شدند. نمونه‌هایی از تیتانیوم خالص تجاری به اباد 2×10-6 میلی‌متر از ورق اولیه برده و آماده گردید. تعدادی از نمونه‌ها بدون پوشش حفظ گردیدند و تعدادی نیز پس از آماده‌سازی سطحی به کمک ساقچی‌بانی با استفاده از تکنیک پاشش پلاستیکی با پوششی در جنس هیدروکسی آیاتیت به ضخامت 40 تا 60 میکرومتر پوشش داده شدند.

در زمینه انتخاب و کاربرد بیوماد پوششی برای توتین کننده و مصرف کننده آمپلنت لدانی و ارتودینی است.
روش‌ها

آزمون‌های آزمایشگاهی در دو بخش مشتمل بر (Structural Characterization) مشخصه‌بایی ساختاری
شناسایی و آنالیز بیوشت نوین هیدروکسی آپاتیت - تتانیوم و زیرلایه و همچنین ارزیابی رفتار خوردگی زیرلایه‌های فلز فولاژ زنگ‌زنگ دف آپاتیت و پوشش‌های تيتانیوم بررسی
پوشش هیدروکسی آپاتیت در مطالعات قبل انجام گرفته است.

مشخصه‌بایی ساختاری (Philips X'Pert-MPD System)

تکنیک برخ پرتوایکس

برای شناسایی ساختار و فازهای پوشش نوین کامپوزیت هیدروکسی آپاتیت - تتانیوم مورد استفاده قرار گرفت. تیوب بکار رفته پرتون Kβ همین مول 86/1/15 انتکستروم CuKα\(\lambda=1.542\ A\) را تأمین نمود و فیلتری از نیکل یافت. نرخ روش معادل 0.5 درجه بر دقیقه و ولتاژ عملی برای 30 کیلوولت و جریان معادل 40 میلی آمپر بود و زاویه برای (20) از 10 تا 70 درجه انتخاب گردید.

پس از حصول انگو پراش پرتون ایکس هر یک از پوشش‌ها، فازها و جزای ساخته آن از طریق مقایسه پیک‌های پراش و شدت آنها با اطلاعات موجود در استاندارد انجمن آزمون و مواد آمریکا و سایر منابع مشخص و تعیین گردید.

برای مطالعه ریزساختار و مرتفوژی سطح پوشش نوین کامپوزیت هیدروکسی آپاتیت - تتانیوم از میکروسکوپ الکترونی روشی (Philips XL30)، استفاده گردید.

 ضمن ارزیابی ورودی‌های سطح و یکنواختی پوشش میکرووالسیک انتزاعی آن نیز به کمک تکنیک آتلایز توزیع انرژی پرتوایکس (EDX) تعیین گردید.

مقطع عرضی نمونه‌های پوشش داده شده نیز به کمک میکروسکوپ الکترونی روشی مطالعه گردید.
یافته‌ها
میکروآنالیز عمری از سطح پوست نوین کامپوزیت
لایه‌ای هیدروکسی آپاتیت در تصویر ۱ ملاحظه می‌شود.
آنالیز پوست از نظر ترکیب شیمیایی هیدروکسی آپاتیت در
کناره مطلوب قرار دارد و نسبت وزنی کلسیم به فسفر
حدود ۱/۹ است.

با تغییر ولتاژ سیستم و افزایش عمق نفوذ‌پذیری در این
نمونه‌ها، پیک‌های عناصری جوی کلسیم، فسفر، اکسیژن و
تیتانیوم از پوست نوین کامپوزیت و آهن از زیر‌لایه مشاهده
شد.

در تصویر ۲ الگوی پراش پرتو ایکس پوست نوین کامپوزیت
لایه‌ای بر روی فولاد زنگ‌زن مشاهده می‌شود. پیک‌های
تیتانیوم و مشخص الگوی پوست هیدروکسی آپاتیت
(Hydroxyapatite; JCPDS شماره شده ۳۴-۰۳۴۹)
مطابقت دارد و مشخصات ساختاری از هیدروکسی آپاتیت
با بلورینگی کافی است که احتمالاً مقدار انکی از سایر
تیتانیوم از الگوی کلسیم فسفات و تراکسیم فسفات نیز در
نمونه‌ها موجه است.

تصویر ۱ - ظرف سنجی توزیع انرژی پرتو ایکس و میکروآنالیز
عنصری از سطح پوست نوین کامپوزیت لایه‌ای هیدروکسی
آپاتیت- تیتانیوم

به منظور ارزیابی و مقایسه رفتار خطاهای سه نوع آلیانز
مختلف بین پوست و لایه‌البامیاها به پوست، لایه‌البامیاها
از الیاژ فولاد درگیری ۱۶۵ آل، الیاژ‌های تیتانیوم و تیتانیوم
خاص تجاری یون پوست و همچنین سه نوع آلیانز مذکور
با پوست هیدروکسی آپاتیت پلاستیک‌شده و نیز
فولاد زنگ‌زن ۱۶۵ آل با پوست نوین کامپوزیت هیدروکسی
آپاتیت- تیتانیوم، با استفاده از دستگاه پتانسیومتر
(EG&G Potentiostat ۲۶۳A) مجهز به نرم افزار
CorrSoft III ۳۵۲ مورد آزمون الکتروشیمیایی پلاریزاسیون بین پتانسیومنتریکی قرار گرفتند.

دامی آزمون (+۳۵۰) درجه شامل یک برد کنترل آن
(Eyela Thermistor Temppet T-۸۰) صورت می‌گرفت.

در مرحله دوم آزمون به بار ارتقاء داده می‌شد که اجرا در دستگاه پلنگی
 آزمون به روش پلاریزاسیون خزی در محدوده
±۲۰۰ میلی ولت سیستم به پتانسیل خوردگی و در مرحله دوم
پلاریزاسیون پتانسیودینامیکی برای حصول نمودارهای
پلاریزاسیون کاتدی و آنید به انجام رسید.

از آزمونهای پلاریزاسیون پتانسیودینامیکی هنگام آغاز
(Open-Circuit Potential) می‌شود که پتانسیل مدار بار
به حالت پایدار رسیده بود، به گونه‌ای که طی مدت ۶ دقیقه،
پیشر در ۳± میلی ولت تغییر نکرد؛ به‌همین دلیل مدت‌مان
نگهدازی نمونه‌ها در الکتروپتی کم از سو کلر خروجی
هموار بیشتر از دو ساعت بود. نرخ روسری پتانسیل مادل
۵±۰ میلی ولت بر ثانیه بود. نمودارهای پلاریزاسیون کاتدی و
آنید برای هر نمونه حاصل گردید. پتانسیل خوردگی
مشخص شد و چگالی جریان خوردگی نیز به روش
استرآپلوسیون تاکل محاسبه و تعیین گردید.

چگالی جریان خوردگی و انحراف معیار مربوطه برای هر
گروه از نمونه‌ها نیز محاسبه و تعیین شد.
تصویر ۴- نمودارهای پلازماسوز کاتدی و آندیه سه نوع زیرمجموعه فلزی بدون پوشش

- فولاد زنگنزن ۲۲ ال
- آزیز ویاگرام
- تیتانیوم خلاص تجاری، در محلول سرم فیزیولوژی در دمای ۷۷ درجه سانتیگراد

تصویر ۵- نمودارهای پلازماسوز کاتدی و آندیه سه نوع زیرمجموعه فلزی با پوشش هیدرکسی آناتیت

- فولاد زنگنزن ۲۳ ال با پوشش
- آزیز ویاگرام با پوشش
- تیتانیوم خلاص تجاری با پوشش، در محلول سرم فیزیولوژی در دمای ۷۷ درجه سانتیگراد

به منظور سهولت مقایسه رفتار خردگی، نمودارهای پلازماسوز فولاد زنگنزن بدون پوشش، فولاد زنگنزن با هیدرکسی آناتیت- تیتانیوم و روی فولاد زنگنزن که نشانگر ساختار ذوب بسته و مختل است.

تصویر ۶- الگوی پرتویکس بیشتر پوشش کامپوزیت‌هایی هیدرکسی آناتیت- تیتانیوم در روی فولاد زنگنزن ۲۲ ال
مقدار میانگین چگالی جریان خرگوشی همراه با انحراف معیار مربوطه و پناسیل خورگوشی سه نوع زیرلایه فلزی بدون پوشش و با پوشش هیدروکسی آپاتیت و نیز فولاد زنگنزن با پوشش نوین کامپوزیت لیاقی است. نمودارهای پلازامسون همان نمودارها در محلول رنگدر در تصویر 9 مشاهده می‌شود.

تصویر 7- نمودارهای پلازامسون کاتدی و آندی سه نوع زیرلایه فلزی با پوشش هیدروکسی آپاتیت

تصویر 8- نمودارهای پلازامسون کاتدی و آندی سه نوع زیرلایه فلزی با پوشش هیدروکسی آپاتیت و نیز فولاد زنگنزن و پوشش کامپوزیت در محلول سرم فیزیولوژی که به کمک نمودارهای پلازامسون و روش برون‌باین تاقل تمیزی در جدول 1 ارائه شده است. مقدار میانگین چگالی جریان خرگوشی همراه با انحراف معیار مربوطه و پناسیل خورگوشی هر گروه از نمودارها در محلول رنگدر در جدول 2 ارائه شده است.
طرح‌های تهیه و ارزیابی پوشش نوین هیدروکسی آپاتیت-تیتانیوم برای اندازه‌پیمایندی دندانی

دکتر محمد حسین فتحی و همکاران

خوردارگی هر یک از سه نوع زیبرالیا فلزی با پوشش در محلول کاهش یافته است (جدول‌های ۲۳). پوشش نوین کامپوزیت‌سازی‌های هیدروکسی آپاتیت-تیتانیوم تأثیر مهم و قابل توجهی بر رفتار خودرگی فولاد زنگنز ۲۱۶ آل داشته است؛ به طوری که پتانسیل خودرگی فولاد زنگنز با پوشش کامپوزیت‌سازی‌های بدون پوشش در محلول سرم فیزیولوژی (Ecorr = 153 ± 20 mV) مقایسه با پتانسیل خودرگی فولاد زنگنز بدون پوشش در درجه ۳۷ درجه سانتی‌گراد (Ecorr = 174 ± 20 mV) به سمت پتانسیل‌های نرمال تغییر کرده است.

چگالی جریان خوردارگی فولاد زنگنز با پوشش کامپوزیت‌سازی‌های بدون پوشش (icorr = 44 nA/cm²) در مقایسه با چگالی جریان همان زیرالیا بدون پوشش (icorr = 256 nA/cm²) به شدت کاهش یافته و محاسبه چگالی جریان خوردارگی تیتانیوم خالص تجارتی با پوشش هیدروکسی آپاتیت شده است. همین رویداد در محلول ریگر نیز ملاحظه می‌شود و تشابه چگالی جریان خوردارگی نیز مشاهده است.

بخت

گزارش شده است که مقاومت خوردارگی فولاد زنگنز با پوشش هیدروکسی آپاتیت افزایش می‌یابد (۴۱): این مطلب با نتایج حاصل از آزمون‌های الکتروشیمیایی بالاریزاسیون پاتسیستونال‌هایی خاض مطالعه دارد؛ همچنین گزارش شده است که خوردارگی هیدروکسی آپاتیت آزاد شدن یون‌های فلزی از ایمپلنت به داخل بدن را کاهش می‌دهد و سطح فلز را نیز از هجوم محیط محافظت می‌کند (۴۲،۴۳).

تصویر ۹- نمودارهای بالابریزاسیون کاتدی و آنی فولاد زنگنز با سه نوع پوشش و تیتانیوم خالص تجارتی با پوشش هیدروکسی آپاتیت در محلول زنگنز ۲۱۶ آل بدون پوشش در محلول سرم فیزیولوژی (HA/Ti ρ = ۴۵۵ nA/cm²) بخش از آن تیتانیوم و مینالیوم خالص تجارتی است (تصویر ۳۰ جدول ۱)؛ به عبارت دیگر فولاد زنگنز ۲۱۶ آل بدون پوشش در محلول سرم فیزیولوژی قرار دارد (جدول ۱) همین رهنمود در محلول زنگنز نیز مشاهده می‌شود (تصویر ۳۰ جدول ۱) و مفهوم آن این است که نوع محلول یا الکترولیت در رده‌بندی مقاومت خوردارگی زیرالیا فلزی تأثیری ندارد.

پوشش هیدروکسی آپاتیت تأثیر محسوسی بر مقاومت خوردارگی که سه نوع زیرالیا فلزی داشته و چگالی جریان
جدول 1- مقادیر میانگین جدایی جریان خوردگی (انحراف معیار) و توانایی خوردگی سه نوع زیرلایه فلزی با و بدون پوشش هیدروکسی آپاتیت در محلول سرم فیزیولوژی در دمای 37 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>(nA/cm²)</th>
<th>پانسیل خوردگی</th>
<th>تعداد نمونه‌های آزمایشی</th>
<th>نوع ماده مورد آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>اکسترالاسیون تاقی</td>
<td>مول (nV)</td>
<td>شماره</td>
<td></td>
</tr>
<tr>
<td>164 (16)</td>
<td>345 (16)</td>
<td>173 ± 1.20</td>
<td>2</td>
</tr>
<tr>
<td>68 (2)</td>
<td>187 (2)</td>
<td>111 ± 1.00</td>
<td>3</td>
</tr>
<tr>
<td>55 (5)</td>
<td>56 (5)</td>
<td>153 ± 2.20</td>
<td>2</td>
</tr>
<tr>
<td>34 (2)</td>
<td>164 (2)</td>
<td>156 ± 1.41</td>
<td>2</td>
</tr>
<tr>
<td>80 (27)</td>
<td>156 ± 1.10</td>
<td>3</td>
<td>آیلز و ایتانیوم با بوشی</td>
</tr>
<tr>
<td>32 (3)</td>
<td>155 ± 1.01</td>
<td>2</td>
<td>تیتانیوم خلاص تجاری بدون بوشی</td>
</tr>
<tr>
<td>53 (2)</td>
<td>32 (2)</td>
<td>234 ± 1.20</td>
<td>5</td>
</tr>
<tr>
<td>37 (8)</td>
<td>252 ± 1.01</td>
<td>4</td>
<td>مواد مورد آزمایش</td>
</tr>
</tbody>
</table>

جدول 2- مقادیر میانگین جدایی جریان خوردگی (انحراف معیار) و پانسیل خوردگی سه نوع زیرلایه فلزی با و بدون پوشش هیدروکسی آپاتیت در محلول سرم در دمای 37 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>(nA/cm²)</th>
<th>پانسیل خوردگی</th>
<th>تعداد نمونه‌های آزمایشی</th>
<th>نوع ماده مورد آزمایش</th>
</tr>
</thead>
<tbody>
<tr>
<td>اکسترالاسیون تاقی</td>
<td>مول (nV)</td>
<td>شماره</td>
<td></td>
</tr>
<tr>
<td>181 (3)</td>
<td>175 ± 1.60</td>
<td>4</td>
<td>فولاد زنگکنش بدون بوشی</td>
</tr>
<tr>
<td>49 (1)</td>
<td>32 (3)</td>
<td>111 ± 1.00</td>
<td>1</td>
</tr>
<tr>
<td>49 (1)</td>
<td>67 (3)</td>
<td>153 ± 2.20</td>
<td>2</td>
</tr>
<tr>
<td>32 (3)</td>
<td>164 (2)</td>
<td>156 ± 1.41</td>
<td>2</td>
</tr>
<tr>
<td>56 (5)</td>
<td>156 ± 1.10</td>
<td>3</td>
<td>آیلز و ایتانیوم با بوشی</td>
</tr>
<tr>
<td>32 (3)</td>
<td>155 ± 1.01</td>
<td>2</td>
<td>تیتانیوم خلاص تجاری بدون بوشی</td>
</tr>
<tr>
<td>53 (2)</td>
<td>234 ± 1.20</td>
<td>5</td>
<td>تیتانیوم خلاص تجاری با بوشی</td>
</tr>
<tr>
<td>37 (8)</td>
<td>252 ± 1.01</td>
<td>4</td>
<td>مواد مورد آزمایش</td>
</tr>
</tbody>
</table>

نتایج حاصل از آزمون‌های الکتروشیمیایی و تأثیر بوشی هیدروکسی آپاتیت بر رفتار خوردگی زیرلایه فلزی می‌شود. بیشتر از نتایج داده شده است که بوشی زرین‌کنی‌های آیلز کالت- گرم، مقاومت خوردگی را بهبود می‌بخشد و آزاد شدن بیون‌های فلزی را کاهش می‌دهد. اثبات از بوشی بوسرامیکی‌های گذشته از بوش‌های هیدروکسی آپاتیت، مورد توجه بوده و مطالعه‌های لازم برای تأثیر هیدروکسی آپاتیت بر روی آیلز تیتانیوم- آلومینوم- و نانوتیتانیوم شدید آزاد شدن تیتانیوم و آلومینیوم می‌گردد و آزاد شدن تیتانیوم و آلومینیوم ندارد. همچنین تأثیر قابل توجهی بر سرعت آزاد شدن یون‌ها از آیلز کالت- گرم نیز ندارد (21). این گزارش‌ها با تحلیل ارائه‌شده حاضری مبنی بر این که بوشی هیدروکسی آپاتیت همانند یک معنی و سد مکانیکی عمل می‌کند و به دیل ریزکره‌ها قادر نیست به طور کامل از ارتباط زیرلایه‌های محدود ممانعت به عمل آورد. تکامل‌دار می‌شود.
است که یک لایه از بیومارکر مانند آلومینیا و زیرکونیا بر سطح ایمپلنت فاصله نوایلی آن را دارد که عملکرد ایمپلنت را از نظر ثابت ایمپلنت سایش و خودگیری اصلاح نمی‌کند.

(۲۷) (۲۷)

پوشش آلومینیا روی آیاژ کیالت - گرم - مولیبدن و فولاد زنگنزن، سبب بهبود رفتار خودگیری می‌شود و چگالی جریان خودگیری را کاهش می‌دهد (۴۸).

استفاده از پوشش زیرکونیا (ZrO۲) بر روی آیاژ کیالت - گرم - مولیبدن باعث بهبود رفتار خودگیری، افزایش پتانسیل خودگیری و کاهش چگالی جریان خودگیری می‌شود (۴۹, ۵۰).

پوشش اکسید تیتانیوم (TiO۲) روی فولاد زنگنزن نیز موجب افزایش مقاومت نسبت به خودگیری می‌شود (۴۷).

در راستای بهبود سطح و خواص سطحی ایمپلنت‌های فاصله، استفاده از پوشش‌های چاپی دوبانی نیز بهبود کاربرد پزشکی و حصول مزایای کلینیکی برتر در ارتودنی و دندانپزشکی مورد توجه قرار گرفته است (۴۹).

از نقطه نظر سازگاری زیستی، نه تنها درک و شناخت سیمی‌بند عملاً میزان خودگیری ایمپلنت‌های فاصله در محیط فیزیولوژیکی از اهمیت اساسی برخوردار است (۲۰).

چنین روش‌هایی می‌تواند کاهش ایمپلنت‌ها باعث بهبود سنجش و اندام‌دگی‌های از دست رفته چگالی جریان خودگیری صورت گیرد. هم‌اکنون و تکنیک‌های طبقه‌بندی با رنگ‌بندی سازگاری زیستی آنها به هنگام کاربرد در بدن موجود زندگی خواهد داشت.

(۱۶) (۱۶)

سازگاری زیستی آیاژ‌ها اساساً با خودگیری آنها مرتبط است (۴۵) و خودگیری موشنی و آزاد شدن بی‌بال در ایمپلنت‌های فولاد زنگنزن، طلای ارزیابی‌های کلینیکی مشاهده شده (۱۹) و بررسی ایمپلنت‌های فولاد زنگنزن که
ناتیج پژوهش حاضر نشان داد که پوشش کامپوزیت لإهای هیدروکسی آبنیت- تیتانیوم ناتور می‌تواند در فنرگره‌ی فولاد زنگنهز در اثر پیچیدن، روند خوزه‌ی فولادآویزی و دست‌پزشکی، از تاثیرات موثری در بهداشت و سلامتی مصرف کننده داشته باشد.

نتیجه‌گیری

پوشش نوین کامپوزیت لإهای هیدروکسی آبنیت- تیتانیوم بر روی فولاد زنگنهز موجب ایجاد نگرانی مصرف کننده و دست‌پزشک می‌شود. بنابراین، به‌خوبی باید این پوشش نوین به‌خوبی بر روی فولاد زنگنهز استفاده شود.

در نتیجه، می‌توان به دست داشته باشیم که استفاده از پوشش نوین کامپوزیت لإهای هیدروکسی آبنیت- تیتانیوم در جایگاه پوشش‌های موجود در این زمینه می‌تواند به بهبود سلامتی و سلامتی مصرف کننده کمک کند.

51
طراحی، تهیه و ارزیابی پوشش نوین هیدروکسی آپاتیت-تیتانیوم برای انودوایلمنت دندانی

ب) همبندی با استخوان و ترویج رشد آن، ایجاد پویا و بهبود تثبیت پوستی- شیمیایی بین استخوان و ایمپلنت و تثبیت بیولوژیکی سرعت و درمان کوتاه‌تر تلفیق پوشش کامپوزیت لایه‌ای روی فولاد نگینز ترکیبی پیشرفت در تولید ماده هامیلین برای ساخت اندوایلمنت‌ها. معرفی ممکن که ورزشگاه‌های مطلوب و هزینه تلفیق دارد و این تلفیق مناسب همیلین برای بیمار ایمپلنت می‌باشد. ایمپلنت‌ها مثل ایمپلنت‌های داخل استخوانی و ایمپلنت‌های اندانی زیر ضریح استخوان نیز مورد توجه قرار گرفت.

خوردگی فولاد نگینز با پوشش نوین کامپوزیت لایه‌ای، معادل با چگالی جریان خوردگی تیتانیوم خالص تجارتی با پوشش هیدروکسی آپاتیت می‌باشد و این پدیده مستقل از نوع محلول فیزیولوژیک است.

با حضور پوشش نوین کامپوزیت لایه‌ای دو هدف کامل‌ا متفاوت مراحل از چهار مراحل حصول است: (الف) بهبود مقاومت خوردگی فولاد نگینز، (ج) کاهش آزاد شدن بیشتر الیاف و ممکن است ایجاد آماس، (د) تهاده و تحریک بافتی

منبع:

25. FF. محمد حسن: مرتبه، وجه السادات. کاربرد پژوهشی پوشهای بیومامیکی آمپنتها، جا، ناصح مهندی، ایران، 1388.

درک‌محمد حسن فتحی و همکاران
طرحی، تهیه و ارزش‌یابی پویش نوین هیدروکسی آپاتیت-تنیاکی برای اندووالپلت دندانی

۴۷- موسوی، سید بهروز؛ فتحی، حسین حسن؛ فیضی، فائزه؛ قاضی، مرتضی؛ ویژه‌ساخت. ارزیابی میکروسکوپی و تغییرات ویژه‌ساختی در فرآیند اندووالپلنت‌های دندانی با و بدون پوشش هیدروکسی آپاتیت. مجله دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران، سال ۱۳۸۷، شماره ۱، صفحات ۳۰-۳۷.

۴۸- فتحی، حسین حسن؛ فیضی، فائزه؛ موسوی، سید بهروز؛ چکاری، غلامرضا؛ ساداتی، محمد؛ فتحی، محمد حسن. تغییرات ویژه‌ساختی در فرآیند اندووالپلنت و رشد عصب‌پیوستگی در دندان‌های در دندان‌پزشکی و خدمات بهداشتی درمانی تهران، سال ۱۳۸۸، شماره ۱، صفحات ۱۸۰-۱۸۷.

۴۹- موسوی، سید بهروز؛ فیضی، فائزه؛ قاضی، مرتضی؛ ویژه‌ساخت. ارزیابی میکروسکوپی و تغییرات ویژه‌ساختی در فرآیند اندووالپلنت‌های دندانی با و بدون پوشش هیدروکسی آپاتیت. مجله دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران، سال ۱۳۸۷، شماره ۱، صفحات ۱۸۰-۱۸۷.

۵۰- موسوی، سید بهروز؛ فیضی، فائزه؛ قاضی، مرتضی؛ ویژه‌ساخت. ارزیابی میکروسکوپی و تغییرات ویژه‌ساختی در فرآیند اندووالپلنت‌های دندانی با و بدون پوشش هیدروکسی آپاتیت. مجله دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران، سال ۱۳۸۷، شماره ۱، صفحات ۱۸۰-۱۸۷.

