اندازه‌گیری و مقایسه ابعاد مختلف رنگ منتج از دو نوع آلیاز پیست متمال در دیسک‌های سرامومتال

دکتر عید نوکار* - دکتر سیامک مراذی*** - دکتر محمد رضا مهدوی‌زاده***

* استادیار گروه آموزشی پروتزهای تاثبیت و اکلون دانشکده دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران
** دانشیار گروه آموزشی دانشکده پلیمر دانشگاه صنعتی امیر کبیر
*** دانشگاه

Title: A comparison and assessment on various color dimensions from two base metal alloys in ceramometal disks
Authors: Nokar S. Assistant Professor*, Moradian S. Associate Professor**, Mohammad zade M. Dentist Address: *Dept. of Fixed Prosthodontics, Faculty of Dentistry, Tehran University of Medical Sciences ** Dept. of Polymer, Amir Kabir University
Statement of Problem: Color matching and accurate shade selection are the challenging problems common to restorative dentistry. In ceramometal restorations, the type of substructure alloy affects the final color of bonded porcelain. Nickel- chromium alloy is the most commonly used one that its Iranian product, namely Minalux, is similar to Verabond2.
Purpose: The aim of this study was to assess and compare various color dimensions resulting from Minalux and Verabond2 alloys.
Materials and Methods: Nine disks, approximately 16 mm in diameter and 0.5 mm thickness, were cast from each alloy. Then, porcelain Vita VMK 5 3 A2 was baked onto the entire test disks, following the manufacturer’s instruction. Color samples, at the same time and under the same conditions, was measured by Data color spectrophotometer in CIE Lab System and Munsel system under four light sources (A, C, D65 and TL8). Then MATLAB TOOL BOX Statistic 5.2 was used to determine mean and bilateral variance analysis.
Results: It was indicated that the F value on hue, value and chroma was less than of the table value stated with 99% coefficient confidence, confirming Ho theory. In other words, there were not any significant differences between ceramometal disks made of Minalux and Verabond2 in the three dimensions of color.
Conclusion: Having desirable physical, mechanical and biological properties, Verabond2 can be replaced by Minalux alloy.

Key words: Ceramometal; Spectrophotometer; Verabond2; Minalux; Visual Assessment
Journal of Dentistry. Tehran University of Medical Sciences (Vol. 16; No. 4; 2004)

چکیده

یافته‌ها: بر اساس نتایج آزمایشات پیش‌گیری و مقایسه ابعاد مختلف رنگ منتج از کاربرد دو آلیاز سرامومتال و ورابند2 انجام شد.

روش بررسی: در این تحقیق از هر آلیاز 9 دیسک به ضخامت 15 мм و قطر 16 میلیمتر بهره و طبق دستور کارخانه سازنده پرسنل
مقدمه
بروتهزا ثابت وترمیم‌های سرامومتال در دندانپزشکی از جایگاه ویژه‌ای برخوردارند. گاهی با وجود رعایت کامل فاکتورهای بیولوژیکی و مکانیکال در طراحی ترمیم‌ها، به علت اختلاف رنگ ترمیم با دندان‌های قدامی و یا دندان‌های بجای مشکلات جدی بین بیمار و دندانپزشک از یک سو و دندانپزشک و تکسیس از سوی دیگر بروز می‌کند. انتخاب و هماهنگ کردن رنگ مشکل بسیاری است که فکر و دهن اکثر دندانپزشکان را به جویدن جریه کرد. پس از آن، دندانپزشکان از آن‌ها مشغول می‌شوند، ولی رایج، سرامومتال را تحت آن‌ها می‌پذیرند. در مطالعات متعددی بررسی رنگ پرسر از اسیکترومتوری امکانی استفاده شده است. رنگ بررسی کردن (1) و همکاران (2) نشان دادند که تغییرات در درجه ماله‌ای پس منجر به تغییر در رنگ شدید ایجاد شده است. در نتیجه، از آن‌ها مشگول می‌شوند.

در این مطالعه، سیستم‌های اسکاتورومتوریک شناسایی دانشکده تغییرات در رنگ پس می‌کنند.

درک بررسی عالیها با چیزی طالب پس نمی‌گردد، و چون با افزایش ضخامت لایه‌ای، مدول نمی‌گردد. در نهایت، رنگ پس که به رنگ پرسن اشاره می‌کند.

نتایج: مهندسی و دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران

(دوره 16، شماره 4، سال 1382)
در سال 1987 دستگاه کالریتری قابل قبول جهت تحقیقات توسط Seghi و همکاران ارائه شد (9). که برای تعیین اختلاف رنگ بین گروه‌های مختلف پرسن و لاپشه و Shaffner مختلف اپک از این دستگاه استفاده می‌شود. نیز از همین منظور در Jones نمونه‌های پرسن استفاده کردن (10).

روش بررسی
در این تحقیق از آلیاژهای مینالوکس (شرکت موادکاران) پلاستیکی (Plastic Runner Bar) وصل گردید.

جدول 1- خواص فیزیکی و مکانیکی آلیاژ مینالوکس

<table>
<thead>
<tr>
<th>Chemical Comp.:</th>
<th>Ni principal constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength:</td>
<td>940 MPa (136,200 psi)</td>
</tr>
<tr>
<td>Yield Strength:</td>
<td>560 MPa (81,200 psi)</td>
</tr>
<tr>
<td>Porcelain Bond:</td>
<td>87 MPa (12,700 psi)</td>
</tr>
<tr>
<td>Elongation:</td>
<td>3%</td>
</tr>
<tr>
<td>Hardness, HV5:</td>
<td>400</td>
</tr>
<tr>
<td>Density:</td>
<td>8.2 g/ cm³</td>
</tr>
<tr>
<td>Coefficient of Expansion:</td>
<td>13.8×10⁻⁶ @ 600°C</td>
</tr>
<tr>
<td>Melting Range:</td>
<td>1240-1305°C</td>
</tr>
</tbody>
</table>

جدول 2- خواص فیزیکی و مکانیکی آلیاژ ورباند

<table>
<thead>
<tr>
<th>Chemical Comp.:</th>
<th>Ni 77.05% (Max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength, psi (MPa):</td>
<td>103, 500 (714)</td>
</tr>
<tr>
<td>Yield strength, psi (MPa):</td>
<td>67, 500 (465)</td>
</tr>
<tr>
<td>Elongation, %:</td>
<td>3.7</td>
</tr>
<tr>
<td>Vickers Hardness, HV1:</td>
<td>321</td>
</tr>
<tr>
<td>Density, g/ cm³:</td>
<td>8.3</td>
</tr>
<tr>
<td>Color:</td>
<td>White</td>
</tr>
<tr>
<td>Coefficient of Expansion:</td>
<td>14.1×10⁻⁶ (@500°C)</td>
</tr>
<tr>
<td>Melting Range, °F (°C):</td>
<td>2,426-2,480 (1,330-1,360)</td>
</tr>
</tbody>
</table>
سپندگرانی و حذف موم: بدان منظور از این‌وستهای Degussa/Deguvest
(شماره سریال ۹۸۳۴۶) استفاده گردید.

برای سپندگرانی و حذف موم، از کوره‌های Jelenko استفاده می‌شود. سپندگرها داخل کوره قرار گرفتند و پس از رسیدن به دمای ۵۰۰ درجه سانتی‌گراد به مدت ۱۵ دقیقه در این دما نگهداری شدند؛ سپس دمای کوره تا حدود ۹۰۰ درجه سانتی‌گراد بالا رفته و به مدت یک ساعت و پیش‌دقتی حرارت دیدند.

روی‌کاریهای ذوب آلیاژها، با استفاده از مشعلی با حرارت بالا از نوع سبزیک، رد پوشانی انجام شد. سوخت مشعل گاز پروانگ و اکسیژن و مدت زمان ذوب آلیاژ حدود ۴ تا ۴:۰۰ ثانیه طول انجامید؛ سپس توسط سانتی‌گراد با کوک فنی دستی عمل ریخته‌گری برای ذوب گروه ۹ تایی از هر آلیاژ انجام شد.

آماده‌سازی سطح دیسک‌ها: ابتدا راه‌های توسط سطح دیسک‌های آلیاژ ۱۰/۵ میلی‌متری در داخل جابجایی دیسک‌ها چند میلی‌متری از راه‌های باقی مانده تا آن به عنوان دستگیرنده استفاده شد.

سطح دیسک‌های فلزی توسط سندی‌لاست با ذرات پود آلومینیوم ۵۰ میکرون سند بالاست گردید و سپس به مدت ۱۰ دقیقه زیر بخار آب قرار گرفت.

درجه کردنشانی ذوب آلیاژها، درجه حرارت داده در کوره با استفاده از دمای ۹۸۳۴۶ درجه سانتی‌گراد به مدت ۱۵ دقیقه در این دما نگهداری شدند تا کوره‌ها از ذرات آلیاژهای احتمالی زدوده شوند؛ سپس به دیسک‌ها تا دمای ۹۸۳ درجه سانتی‌گراد بدون کانر خلا در کوره Vacumat ۲۰۰۰ VITA افتاده شدند. و در صورت وجود مناطق خالی و لکه روی سطح

تصویر ۱- دیسک‌های آلیاژ

تصویر ۲- دیسک‌های سرامیکال
مشاهده نمونه‌ها تحت منابع نوری مختلف نظر خود را در مورد هماهنگی رنگ نمونه‌ها ابراز می‌کند. به منظور مقایسه استیکتروفوتوریکی نمونه‌ها از آنالیز واریانس استفاده شد.

یافته‌ها
نتایج آزمایش استیکتروفوتوریکی در سیستم CIE Lab و CIE Lab CIE 1976 L,a,b را تحت منابع نوری A, D50 و D65 که در 12 شمال، 12 شرق و 12 جنوب چهار منبع نوری محسوب گردیده (جدول 3) آنالیز واریانس داده‌ها در جدول 4 خلاصه شده است. جدول‌های 5 و 6، 7 و 8 TL44 و D65 برای نمایش گروه‌بندی میانگین دو گروه از فرمول استاندارد CIE 1976 L,a,b تحت منابع نوری C

\[\Delta E = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2} \]

\[\Delta E = 0.39 \]

\[\Delta E = 0.42 \]

\[\Delta E = 0.45 \]

بحث و نتیجه‌گیری
بای‌رای محاسبه اختلاف رنگ بین میانگین دو گروه از CIE 1976 L,a,b داده‌ها استفاده شد. مصوبه استاندارد مطالعه عبارت است از CIE Lab و D65, C, A, در ضمن برای کالیبراسیون دستگاه از طریق قصدده سوالات باریم و ثبت نتیجه سه‌گانه استفاده گردید. داده‌ها در Value, Hue, و CIE سیستم بین شد و برای مطالعهعمیق‌تر، مقایسه استانداردهای D65, C, A و D65 استفاده شد. مقایسه داده‌ها با داده‌های دیگر در نهایت با استفاده از نرم‌افزار آماری MATLAB Tool Box Statistic 5.2 انجام شد.

در موارد محرمانه با مارک Multi Light و Color Cabinet Assessment مارک دارای منابع نوری استاندارد D65, C, A مشاهده گردید. مراکز مطالعه عبارت از CIE Lab و D65, C, A استفاده شد. مقایسه میانگین‌ها با دیگر مراکز داده می‌شود که فرآیند از میانگین‌های داده‌های دیگر مقایسه در یکدیگر در دو روش دستگاه، از مشاهده‌گران خواسته شد تا با
جدول ۳- مقادیر میانگین رنگ- همانندی گروه ورایاند و میانگین‌کس تحت چهار منبع نوری استاندارد

<table>
<thead>
<tr>
<th>Color coordinates CIE Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>Verabond2</td>
</tr>
<tr>
<td>Illuminant</td>
</tr>
<tr>
<td>D55</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>TL64</td>
</tr>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>Minalux</td>
</tr>
<tr>
<td>Illuminant</td>
</tr>
<tr>
<td>D55</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>TL64</td>
</tr>
</tbody>
</table>

جدول ۴- آنالیز واریانس

<table>
<thead>
<tr>
<th>Lightness:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hue:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chroma:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>T</td>
</tr>
</tbody>
</table>

جدول ۵- بررسی بصری نمونه‌ها تحت منبع نوری A

<table>
<thead>
<tr>
<th>مشاهده‌گر</th>
<th>اول</th>
<th>دوم</th>
<th>سوم</th>
<th>چهارم</th>
<th>پنجم</th>
<th>ششم</th>
<th>هفتم</th>
<th>هشت‌م</th>
<th>نهم</th>
<th>دهم</th>
<th>نهم</th>
<th>ششم</th>
<th>هفتم</th>
<th>چهارم</th>
<th>پنجم</th>
<th>جفت نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

21
یکاییک نمونه‌های وراباند ۲ و مینالوکس با میانگین گروه خود مقایسه شدند؛ گروه الازی و وراباند ۲ نسبت به میانگین گروه خود پراکنده کمتری داشت و اصطلاحاً در این گروه رنگ یک‌دست‌تر و یک‌نواخت‌تر بود؛ در گروه مینالوکس مشخص شد که هر نمونه در چه فاصله‌ای از میانگین گروه خود قرار گرفته و میزان پراکنده نمونه‌ها نسبت به میانگین خود چگونه است.

جدول ۶- بررسی بصري نمونه‌ها تحت منبع نوری 2400K

<table>
<thead>
<tr>
<th>مشاهده‌گر</th>
<th>جفت نمونه</th>
<th>ثالث</th>
<th>دوم</th>
<th>سوم</th>
<th>چهارم</th>
<th>پنج‌م</th>
<th>ششم</th>
<th>هفتم</th>
<th>نهم</th>
<th>دهم</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

جدول 7- بررسی بصري نمونه‌ها تحت منبع نوری 4000K

<table>
<thead>
<tr>
<th>مشاهده‌گر</th>
<th>جفت نمونه</th>
<th>ثالث</th>
<th>دوم</th>
<th>سوم</th>
<th>چهارم</th>
<th>پنج‌م</th>
<th>ششم</th>
<th>هفتم</th>
<th>نهم</th>
<th>دهم</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
تصویر ۳- چایگاه نمونه‌های میتانولکس و وراباند ۲ در محور روش‌نامی

که در کتابت نیز ناگهان این مقدار، نمونه‌های میتانولکس و وراباند ۲ را در محور محورهای متغیر و نیز به نام‌های میتانولکس و وراباند نشان می‌دهد. نمونه‌های میتانولکس و وراباند ۲ را در محور محورهای متغیر و نیز به نام‌های میتانولکس و وراباند نشان می‌دهد.

تصویر ۴- چایگاه نمونه‌های میتانولکس و وراباند ۲ در محور روش‌نامی

و اختلاف جندانی بین پراکندگی نمونه‌ها دیده می‌شود.

جدول ۴ بینانگ آنالیز واریانس داده‌ها می‌باشد. مقادار آماره

(C) Chroma برای F ۲/۲/۲/۲ و برای (V) Value برای F ۲/۲/۲/۲ و برای (H) Hue برای F ۲/۲/۲/۲ بود که هر سه این مقادیر از مقدار

پرتره‌ای پای ضریب اطمینان ۹۹% که طبق جدول برای F ۲/۲/۲/۲ می‌باشد، کمتر از نیمه بوده در

می‌باشد، کمتر از نیمه بوده در

تایید

و اختلاف آماری معنی‌دار گروه‌ها از نظر

و

و

و

تشویر ۳- چایگاه نمونه‌های میتانولکس و وراباند ۲ در محور محورهای متغیر و نیز به نام‌های میتانولکس و وراباند نشان می‌دهد. نمونه‌های میتانولکس و وراباند ۲ را در محور محورهای متغیر و نیز به نام‌های میتانولکس و وراباند نشان می‌دهد.

تصویر ۴- چایگاه نمونه‌ها را در محور روش‌نامی (L) نشان می‌دهد. نمونه‌ها بین مقادیر ۲/۷/۲ و ۲/۸ پراکندگی دارند.
دانشگاه تهران و مقایسه ابعاد مختلف رنگ منتهی از دو نوع آلیاف بیس، مثال در دیسک‌های سرامیکال

چون مقدار آماره \(F \) جدول با ضریب اطمینان 99\% (P<0.05) کوچکتر بود، می‌توان به دلیل وجود اختلاف معنی‌دار در این دو گروه از هر سه مورد می‌شود. به عبارتی، دیگر بین دیسک‌های سرامیکال تهیه شده با دو نوع آلیاف نیکل-کروم میتالوکس و ورایاند در ابعاد سه‌گانه رنگ (Chroma, Value, Hue) اختلاف معنی‌داری وجود ندارد. در از ارزیابی بر اساس اختلاف معنی‌داری اتحاد می‌شود که از ۱۰ رأی به وسیله نمایشگر تا ۱۰ رأی، یک رأی از ۱۰ رأی از ارزیابی به جهت نمونه اول و چهار رأی از ارزیابی به تابع اختلاف رنگ ثابت شده توسط دستگاه اسکنر قرار می‌گیرد.

منابع:

