ارزیابی دقت یک نوع
(In-vitro)
در تعیین طول دندان‌های شیری

دکتر مهدي شهرایی**- دکتر بهمن سراج- دکتر محمدحسين رکن‌فر- دکتر شهرام مهرفان***
دکتر محمدجواد خرازی فرد***

** استادیار گروه آموزشی دندانپزشکی کودکان دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران
*** استادیار گروه آموزشی دندانپزشکی کودکان دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران
**** استادیار گروه آموزشی دندانپزشکی کودکان دانشگاه علوم پزشکی و خدمات بهداشتی درمانی کرمان

Title: An evaluation on the accuracy of an electronic apex Locator (EAL) in the determination of working length in primary teeth (In-vitro)
Authors: Shahrabi M. Assistant Professor*, Seraj B. Assistant Professor*, Nekoofar MH. Assistant Professor**, Moshrefian. Sh. Assistant Professor***, Kharazi Fard MJ. Dentist
Address: *Dept. of Pedodontics, Faculty of Dentistry, Tehran University of Medical Sciences
**Dept. of Endodontics, Faculty of Dentistry, Tehran University of Medical Sciences
***Dept. of Pedodontics, Faculty of Dentistry, Kerman University of Medical Sciences

Statement of Problem: Radiography is the most common technique in working length determination, however, because of its limitations is not considered as an ideal technique. Its application, particularly for children due to radiation hazards, technical problems in young and unco-operative children and the superimposition of permanent teeth bud on primary teeth root, lead to numerous problems.

Purpose: The goal of this study was to evaluate the accuracy of an electronic apex locator (EAL) in working length determination of primary teeth.

Materials and Methods: In this in-vitro study 96 canals of the extracted primary teeth, with at least 3/4 of the root length remained, were investigated. There were no obstructed canal, previous root canal therapy and perforation of pulp chamber floor. All working lengths were also measured by radiography. The results of Raypex 4 and radiography were compared with actual root canal lengths determined by direct observation. The applied EAL, in this study was called Raypex 4, a new device belonged to the fourth generation (Ratio Type). The results were analyzed by Chi-Square and Pearson correlation statistical tests.

Results: The accuracy of Raypex and radiography were 61.5% and 63.5%, respectively. The differences between Raypex 4 root canal length measurements and those of direct observation were not significant (P=0.08), but such difference between radiography and direct observation was statistically significant (P=0.01). The diameter of the apical foramen (the site of canal opening) did not affect on Raypex 4 accuracy (P>0.05).

Conclusion: Considering the acceptable safetyness, Painlessness, simple and rapid application and an accuracy comparable to that of radiography, the use of Raypex4 EAL for the measurement of primary teeth length is suggested.

Key words: Electronic apex locator device; Apex location; Radiography; Working length

Journal of Dentistry. Tehran University of Medical Sciences (Vol. 17; No1; 2004)
چکیده:
پیمان ماله: رادیوگرافی رایانه‌ای محاسبه‌ی تول کارکرد به شمار می‌رود ولی به دلیل محدودیتهای و مشکلاتی که دارد، روش ابدالی محاسبه‌ی تول کارکرد به اینکه در کودکان به دلیل برنامج‌های محدودیت اینکه تغییرهای تول کارکردی آن به درون شناخت و تغییرهای آن به درون شناسایی و مشکلاتی که با رافعه می‌کند.

هدف: طراحه‌ای ارزیابی کارکرد یک نوع Electronic Apex Locator (EAL) (In-vitro) با استفاده از دندان‌های شیری کودکان نوزادی در بین دندان‌های نوزادی، نوزادان و رفتاری تکنیک یکنواخت در کودکان و غیر همکار و سه‌سوم‌بازیت جوانان دندان تغییر و رسیدن دندان شیری و ... مشکلات عدیده‌ها را فراهم می‌کند.

روش بررسی: در این مطالعه تجربی (In-vitro)، 65 کانال از دندان‌های شیری کودکان نوزادان چه به طور یکسان طول و ریشه آنها باقی مانده بود، با شرط عدم وجود انصاب در کانالها، درمان ریشه‌گیری توسط پروتکلهای مختلف با نوع بازیت برسی شده و طول نمونه توسط رادیوگرافی نیز تعیین شد. میزان مقایسه طول‌گیری به دست آمده از ابزار Raypex با رادیوگرافی نیز طول واقعی کانالها بود، که از طریق (Ratio Type) مشاهده سطح تعیین گردید. مورد استفاده در مطالعه 4 از دندان‌های نوزادی استفاده گردید.

متأسفانه: در این مطالعه 6/15 درصد از دندان‌های شیری کودکان نوزادان و مشاهده‌های اخلاط منابع و مراحل تغییرهای می‌باشند. Proof اختلاف با رادیوگرافی می‌باشد.

نتیجه‌گیری: به نظر می‌رسد با توجه به اینکه، بدون درد بدن، کاربرد راحت و سریع و قابل مقایسه بود دقت دقت با Raypex 4 EAL مورد تحلیل قرار گرفت.

کلید واژه‌ها: دندان‌های کودکان، علوم پزشکی دندانپزشکی، خدمات بهداشتی، درمانی تهران (دوره 17، شماره 1، سال 1383)
کارکرد مناسب و روش ایجاد آن اختلاف نظر وجود دارد ولی معمولاً از رادیوگرافی برای این منظور استفاده می‌شود (15). برخی از محلکاران از 1 میلی‌متر کوتاهتر و برخی 2 میلی‌متر کوتاهتر از ایکس رادیوگرافیک را به عنوان طول مناسب در نظر می‌گیرند (16). برخی نیز موقعیت جوانه دندان دانه‌ای زمانی قرار می‌دهند که دانه را در سطح کرونالی تر از جوانه دندان دانه‌ای تهیه و پر می‌کنند (15). در حال حاضر تا امکان برای به دلائل رساندن آسیب به باندهای بیماری‌ها و جوانه دندان دانه‌ای زیرین از Over Instrumentation، ورای فورامین ایکسک و کانال ریشه بیشتر نمود (16).

دستگاه‌های الکترونیکی تعیین کننده موقعیت ایکسک (Electronic Apex Locator (EAL) Suada) تعیین طول کارکرد محصول می‌شوند و از زمان که (1962) اولین ویژه‌های خود را در مورد این دستگاه‌ها گزارش نمود، بسیاری از انواع EAL تکمیل یافته و معرفی گردید. این دستگاهان در حال حاضر دستگاه‌ها جای خود را در دمان ریشه دندان‌های دانه‌ای بیشتر کرده و به طور گسترده‌ای مورد استفاده قرار می‌گیرند (2).

در این مطالعه تجربی که در سال 1382 در دانشگاه دندانپزشکی دانشگاه علوم پزشکی تهران انجام شد، تعداد 94 کاتال از دندان‌های شیری کشیده شده که حداقل دو سوم طول ریشه آنها باید ماند بود (متوسط تقریبی)، با شرط عدم وجود بروز سؤالات کف بالابکار و اختلالات ریشه، دندان‌های دانه‌ای مورد تحقیق و انتخاب گردیدند.

حجم نمونه به توجه به مطالعه مقام‌دستانی و با نظر گرفتن 5/0=0/81=0/01 تعداد 94 که بر اساس (Generation) این دستگاهها بر پایه نتیجه بودن مقاومت الکتریکی بین مخاط دهان و پری‌ترومو و نسل بعدی این دستگاه‌ها بر پایه تغییر آماده‌پذیری الکتریکی در چهار ایکسک ریشه و افت ناکافی آن در تنگ ایکسکی اکیال عمل "من کننده" (4) (1982).
کردن که سپس حفره دسترسی به بالابه نمونه تهیه گردید. در ضمن برای هر کانال یک شاخه (Index) ثابت اکولوژی آماده گردد تا در تأمین اندازه‌گیری از این مرجع ثابت قابل تکرار استفاده شود.

محيط قرار قاره‌گیرنده‌ها نوعی زل بود که به منظور شیب‌سازی با شرایط پیوستی جهت Nahmias دهان پیشنهاد کردند (9).

پس از برداشتن بوسیدگی‌ها و تهیه حفره دسترسی و پس از اندازه‌گیری ظول کانال‌ها، ابتدا قطر فروارام ایکال (با محل بازیگرگی) نشانادن تاواست یک نفر و به سویل فالی تخمین زده شد. در این مرحله 2 کانال دارای انسداد بودند که از مطالعه حذف شدند.

پس از اندازه‌گیری قطع محل بالای ایکال، دندان‌ها به دو گروه (در هر گروه 28 کانال) تقسیم و کدکاری شدند. Raypex در گروه اول ابتدا طول تمام دندان‌ها توسط 4 ریپس (Treyman; Japan) کانال‌ها به صورت روانه‌سازی مستقیم نیز اندازه‌گیری و ثبت گردید. سپس با تغییر کد مجعد طول این کانال‌ها از طریق رادیوگرافی اندازه‌گیری شدند و در نهایت با تغییر دوباره کدها، دندان‌ها توسط مشاهده مستقیم نیز اندازه‌گیری شدند. در گروه دوم نیز همین اعمال تکرار گردید و با این تفاوت که اندازه‌گیری ابتدا با رادیوگرافی و سپس با دستگاه Raypex انجام شد.

این نحوه دستبندی و نحوه عمل به جهت یکسان کردن دو گروه انجام شد. دندان‌ها با این روش 2 بار توسط عمل کننده مشاهده مستقیم اندازه‌گیری شدند. اندازه‌های تعیین شده توسط مشاهده مستقیم به عنوان میزان مقایسه برای اندازه‌گیری‌های دو روش رادیوگرافی و قرار Raypex برای تغییر طول با دستگاه Raypex کدکاری شده، درون محيط (زئ شیب‌سازی) قرار
این طبقه‌بندی با استفاده از آزمون مکوری بر کانال راپسیم 4 و رادیوگرافی انجام شد. از طول واقعی کانال‌ها (مشاهده مستقیم) در محدوده‌های 0/1 و بالاتر از 1 میلیمتر در جدول 1 از این اشکال استفاده شد. مراحل تیتریسی در جدول 1 است. بین اندازه‌ها به دست آمده از رادیوگرافی مستقیم از نظر آماری اختلاف معنی‌دار وجود نداشت (P=0/8); در حالی که این اختلاف در مورد رادیوگرافی نوع مرکزی بود (P=0/1).

پس از انجام تمام مراحل تحقیق و جمع‌آوری اطلاعات، لازم به ذکر است که با استفاده از آزمون‌های آماری مورد تحلیل قرار گرفت Pearson Correlation و Chi-Square.

جدول 1- توزیع فراوانی اختلاف طول‌های حاصل از رادیوگرافی و 4 با مشاهده مستقیم رادیوگرافی

<table>
<thead>
<tr>
<th>رادیوگرافی</th>
<th>رادیوگرافی اخترافات</th>
<th>اختلاف طول</th>
<th>فراوانی مشاهده</th>
<th>فراوانی مشاهده</th>
<th>فراوانی مشاهده</th>
<th>فراوانی مشاهده</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>2</td>
<td>9/4</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2/1</td>
<td>3</td>
<td>13/5</td>
<td>12/5</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2/3</td>
<td>35</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/2/3</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1</td>
<td>12/5</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1</td>
<td>11/5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1</td>
<td>7/1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>96</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2- توزیع فراوانی اختلاف طول‌های حاصل از 4 با مشاهده مستقیم بر اساس قطر محل باش‌دندگی کانال

<table>
<thead>
<tr>
<th>قطر محل باش‌دندگی کانال</th>
<th>فراوانی حاصل از مستقیم 1</th>
<th>تعداد درصد</th>
<th>تعداد درصد</th>
<th>تعداد درصد</th>
<th>تعداد درصد</th>
<th>تعداد درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1-10 میلیمتر</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>100-200 میلیمتر</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-300 میلیمتر</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300-400 میلیمتر</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400-500 میلیمتر</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>جمع</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
بحث و تنبه‌گیری

تعیین طول کانال در دندانهای دامی به وسیله رادیوگرافی روشی شناخته شده می‌باشد. همچنین از روش‌های تعیین طول الکترونیکی نیز در دندانهای ریشه استفاده شده است (۳۲).

با وجود این که استفاده از EALs در دماغ ریشه دندانهای دامی رویه‌پذیری شده است ولی مطالعات بسیار محضی در زمینه تعیین طول دندانهای شیری با EALs انجام نشده است (۱۸). این دستگاه‌ها قادرند را در محیط خشک و مرطوب داخل یا خارج از قابل اطمینان‌تر عمل می‌کند (۳۳).

در مطالعه حاضر از ۴۴ کانال از دندانهای شیری کشف شده که حداکثر دو سؤم طول ریشه آنها باقی مانده بود، با شرط عدم وجود پروراپسیون کف پال شامی، دماغ ریشه قبلی و اندس داخل کانال در شرایط In-vitro دقت ۶۰/۸٪ میلیمتر از طول واقعی EAL واقعی کانال در محدوده ±۶/۸٪ و در محدوده ±۸۸/۱٪ محاسبه گردید. در میان اندازه گیری‌های انجام شده در محدوده ±۱۲/۵٪ موارد (۱۳ کانال) طول کانال در محدوده خارج از فورمان ایکانال (مقابل باشگاه کانال) تعیین شد.

میزان‌های مختلف طول‌های به دست آمده از و مشاهده مستقیم نیز ۴۱/۶٪ میلیمتر محاسبه شد. دقت رادیوگرافی در محدوده ±۱۲/۵٪ میلیمتر از طول واقعی کانال ±۱۲/۵٪ میلیمتر گردید. میزان‌های مختلف طول‌های به دست آمده از رادیوگرافی و مشاهده مستقیم نیز ۱۲/۵٪ میلیمتر گردید.

به نظر می‌رسد مساله‌ای که در دندانهای شیری وجود دارد و می‌تواند تأثیر بدهد. EAL را مطرح می‌سازد. و تحلیل در ریشه دندانهای شیری و در نتیجه از بين رفت نگه‌داشت.
هرچند تحصیل آماری و روش مقایسه طول‌های اندام‌گیری EAL توسط و مشاهده مستقیم (مقایسه میان‌گین‌ها) در EAL و مشاهده مستقیم (مقایسه میان‌گین‌ها) در EAL است قرار به شناسایی و اندام‌گیری طول کالان تحت صورت وجود تحلیل در ریشه این دستگاه قابل به شناسایی حالات واقعی طول کالان ریشه می‌باشد (2).

به نظر می‌رسد با توجه به مطالعه حاضر و نیز دقت رادیوگرافی (روش مهم در اندام‌گیری طول کالان) که قابل مقایسه با دقت EAL می‌باشد، به منظور بهبود بهبود افزایش از معاون EAL، رادیوگرافی از جمله تاثیر افزایش دانش، همچنین

۲۸
تشکر و قدردانی

این مطالعه با همکاری مرکز تحقیقات دندانپزشکی دانشگاه علوم پزشکی تهران به انجام رسیده است که بدن و سلیقه از مسئولین و همکاران مرکز تشکر و قدردانی می‌گردد.

منابع:

