تصویربرداری در دندانپزشکی ایمپلنت، ضرورت استفاده از روشهای چند بعدی برای تعیین محل ایمپلنت

دکتر سکینه نیکزاد-دکتر عباس ازدری**-دکتر حوریه باشی زاده فخار***

**استادیار گروه آموزشی پروتکسیون دندانپزشکی و عضو مکت تحقیقات دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی، دمانتی تهران
***استادیار گروه آموزشی پروتکسیون دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی، دمانتی تهران

درمانی تهران

چکیده

واج به تکنیک های تصویربرداری نا آشنایی که در ایمپلنت‌شنگی‌ی درون کاربر دارند، یکی از مشکلات دندانپزشکان است که ممکن است به استفاده از دمانتی‌های ایمپلنت‌ها کرایک دارد. در دمانتی‌های روزمره دندانپزشکی کاربرد چندانی ندارند. اصول در فراخوان‌های دندانپزشکی مانند ایمپلنت‌شنگی‌های کلینیک‌های کارآمد انتخاب شده‌اند. در این مقاله بر اساس جستجو در فوآری پژوهشی، مشکل اصلی قرار دادن انسان‌های فرازی در استخوان بر آنها تا نهایت این مقاله با جزییات مورد بحث قرار می‌گیرد.

کلید واژه‌ها: ایمپلنت، رادیولوژی، کارآمدی، ساختارهای پیش از شروع درمان ایمپلنت

Title: Imaging in implantology: The essentials of utilizing multi dimensional techniques in implant positioning

Authors: Nikzad S. Assistant Professor*, Azari A. Assistant Professor*, Bashizade Fakhar H. Assistant Professor**

Address: * Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences
** Department of Oral and Maxillofacial Radiology, School of Dentistry, Tehran University of Medical Sciences

It is quite often for general practitioners who want to use implants in their routine treatments to face with the problem of unfamiliar radiographic technic commonly prescribed in modern implantology. These types of radiograph, which could show the jaws in multiple aspects, are not routinely used by general practitioners. However, for sophisticated very delicate treatment options like implantology, the main problem is that "a metal object want to be placed in an undercut-full and zigzag area like bone", and the so called plain radiographs cannot be used for this purposes without difficulty. In this literature review, based on the data of the most powerful databases including COCHRANE and PUBMED, the necessity of using cross-sectional techniques in pre-implant treatment discussed in detail.

Key Words: Implant; Radiography; Cross-section

مؤلف سؤال: نمایش: تهران- خیابان انقلاب- خیابان قدس- دانشگاه علوم پزشکی تهران- دانشکده دندانپزشکی- گروه آموزشی پروتکسیون دندان

azari@sina.tums.ac.ir

تلفن: 6649922238 شماره الکترونیکی
مقدمه
امروز موافقت درمان‌های ایمپلنت‌های ارتباطی که در سال‌های اخیر در این زمینه به کار رفته‌اند، در روز به روز بهتر می‌شود. این امر به کاملیت آن‌ها و این‌که در این روش‌ها در واکنش به تغییرات ضرورت استفاده از روش‌های جدید مورد بررسی و تدوین است. در این پژوهش به بررسی و تدوین روش‌های ایمپلنت‌های ارتباطی اشاره می‌شود.

۱۹۸۱ که روش برون‌کرسی به صورت کلینیکی معرفی شد (۵)، تصویرپزشکی در دندانپزشک متخصص روش‌های رادیوگرافی ساده می‌شود که عموماً از دهه ۱۹۵۰ بیلادی در وضعیت ثابت از نظر پیش فوتبال و نگرش دندانپزشکی کاربرد رادیوگرافی‌های موجود در دندانپزشکی هم که انجام درمان‌های ایمپلنت‌های روش‌های طبیعی و دقیق است که بر کسی پوشیده نیست. به نظر می‌رسد که با آموزش صحیح می‌توان با دندانپزشک جوان در استفاده از صحیح تر از این روش بیشترتی کمک کرد. یکی از اولین گاهه در ارزیابی طرح درمان ایمپلنت‌های رادیوگرافی‌های برون‌کرسی در کار در دندانپزشکی به کار می‌روند قطعات روی روش‌های رایحه هستند که به طور روزمره در کار می‌روند. در این مقاله نیز که بایستی به درستی شناخته شوند کارایی و محدودیت‌های هر روش است. انتخاب نوع رادیوگرافی با نمای قطعی آن‌ها و موادی که می‌تواند در ارایه طرح درمان هر صحیح تر با دندانپزشک کمک کند. بنابراین هدف اصلی می‌تواند انتخاب بهترین روش تصویربرداری در مراحل مختلف درمان باشد.

نتیجه‌گیری
گام در ارایه طرح درمان برسی وضعیت استخوان از نظر ارتفاع، ضخامت، تراکم و همچنین بررسی میزان هماهنگی مسیر ایمپلنت با پوتو تیپ‌های است (۱). علاوه بر این تبیین میزان توده و تقریب استخوان فک در محل قرار گرفتن ایمپلنت و برسی لزوم استخوان از انواع جراحی تصویربرداری و ترمیمی و ازم کاربرد انواع استخوان مصوب و تعیین مقدار آن در صورت از مالی ارایه طرح درمان به حساب می‌آید. از سوی دیگر، با توجه به عوامل اصورت و عوامل مختلف از استخوان باکیفیت مسیر اول این اجازه خواهد داشت که شخصیت گردند تا ماکان اسباب‌های بدن با حاصل مکان کاهش یابد. بعلاوه این بیانات اپتی‌والوکی‌بیجکتوس که به دست ضایعی می‌کنند از نظر دندان‌پزشک می‌تواند در باقی ماندن یا از نظر در دانش، نتایج کنونی بازخورش متشابه شده در سال‌های اخیر نشان دهنده اهمیت تصویربرداری پیش از اقدام در درمان‌های ایمپلنت است (۱-۳).

روش‌های تصویربرداری در ایمپلنت‌های رادیوگرافی پیش از اقدام در درمان‌های ایمپلنت‌های رادیوگرافی پیش از اقدام در دانش‌های ایمپلنت‌های رادیوگرافی پیش از اقدام در درمان‌های ایمپلنت‌های رادیوگرافی پیش از اق‌
استخوان و تروما را نیز زیر سرال می‌برد. کمیسیون حفاظت در برابر اشعه ارگی پاسخگویی به اشتراهام توموگرافی در درسی محل فرار دادن ایمنیت، اثبات وقت و امکان برور خطرات انسانی در جهت تصویربرداری را از جمله مشکلات اصلی این روش ذکر می‌کند. (۴)

اتوموگرافی کامپیوتری با CT Scan

اتوموگرافی عمده را گرفته است. این فناوری در سال ۱۹۱۳ میلادی با به جهانیان معرفی گرفت Godfrey Hounsfieeld (۲۰). با مطرح شدن این ابزار با توجه به ویژگی سیگنال این ابزار یا تبدیل اطلاعات به سطح مغذی با اطلاعات دیجیتال، ضمن تنها داده‌ها به نتیجه و تحلیل آن برداخته و از طریق یک کامپیوتری سیگنال دیجیتال تصویر تبدیک به واقعیت منطقه را با پاسارای نمایید (۱۰،۲۰) (شکل ۲).

دقت انواع مختلف توموگرافی از نظر مسیر حرکت مورد بررسی قرار گرفت (۱۴). در سال ۱۹۸۸ که را رابطه با متقیشی توموگرافی با ادوات رادیوگرافی پایوکمکی منتشر کردند Lindh و همکاران (۱۵). هدف اصلی آن بر مطالعه مقایسه ضریب اثره رادیوگرافی ساده با توموگرافی در مشخص نمودن محل کالات مورد بوده است. نتایج دو مطالعه مورد توسط Lindh و همکاران تا سال ۱۹۹۳ و نتایج گزارش داد که توموگرافی в تغییر انداز درک جدید کالات در فک پایین را مشخص می‌کند (۱۷،۱۸).

بر نتایج Lindh و همکاران تا کندی که برای مشاهده آناتومی مقعطف عرضی فک پهپا از این نشان اسپیتال توموگرافی استفاده شد در حال بازی برخی از دستگاه‌های رادیوگرافی پایوکمکی امکان تهیه تصویر توموگرافی از مقعطف عرضی فک‌ها را نیز دارد. توموگرافی در به تب تصویربرداری تیتا قادر به تب تصویر قسمت کوهچکی از مقعطف عرضی فک است. که گام کسب اطلاعات کافی به دلیل اناتومی متناظر فک از یک سو و ابزار ایمنیت استانداردهای شکل از سوی دیگر، داشتن قدردان تصویر از تجربه مورد نظر را ایجاد می‌کند حال اگر طرح درمان شامل بیش از یک ایمنیت شود، زمان تصویربرداری به مراتب طولانی تر خواهد شد (۱۱). تصاویر توموگرافی تاثیذي محو هستند و پزشکانی آنها نسبتاً زیاد است (جدول ۱).

در نتیجه تکنیک استخوان توش توئی رادیوگرافی ممکن است و ضخیم بودن لایه توموگرافی در برخی موارد مانع از مشخص شدن بیشتری از نظر استخوان می‌شود. فرهنگشناس علوم رادیولوژی دهان، فک و توسط آمریکا (AAMOR) می‌ویوید این تکنیک در موارد نیاز به ویدئو

شکل ۲- در سمت راست رابطه نقاط با گفتگوی مشاهده می‌شود.

(برگرفته از مرجع ۱)

شکل ۱- توموگرافی معمولی، در سمت جنوب فرآیند تصویربرداری بود.
جدول 1- خلاصه‌ای از مزایا و معاوضه‌های تصویربرداری در درمان‌های ایمپلنت

<table>
<thead>
<tr>
<th>مزایا</th>
<th>روش‌های تصویربرداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدم تداخل پیلیوپاله‌ها</td>
<td>دسترسی همگانی</td>
</tr>
<tr>
<td>دقت کم در صورت استفاده از روش نیم‌نظام</td>
<td>نقط‌بندی اپیکال</td>
</tr>
<tr>
<td>مشکل تهیه رادارگرافی در توانایی بدن‌داران</td>
<td>نقط‌بندی اپیکال</td>
</tr>
<tr>
<td>پوشش محدود</td>
<td>نقط‌بندی اپیکال</td>
</tr>
</tbody>
</table>

امکان تمایش مصرف کنال عصبی	نقط‌بندی اپیکال
در صورت دقت در	نقط‌بندی اپیکال
امکان ارزیابی ضخامت پاکیون‌ها	نقط‌بندی اپیکال
فک پایین	نقط‌بندی اپیکال

بزرگ‌سایه‌ی به‌مزار	۳۰ روز درد
نقش‌بندی محوار و سیستمی از فک‌ها در تصویر و امکان تشخیص	نقش‌بندی محوار و سیستمی از فک‌ها در تصویر و امکان تشخیص
ناحیه قابل توجه تصویر ساختمان‌های لینگال به سمت بالا	نقش‌بندی محوار و سیستمی از فک‌ها در تصویر و امکان تشخیص
احتمال زایمان خطا در درجه تصویربرداری	نقط‌بندی اپیکال
عدم تداخل پیلیوپاله‌ها	نقط‌بندی اپیکال
پوشش کم	نقط‌بندی اپیکال

وجود مشکل در تغییر محل دقیق ساختمان‌های آناتومیک	نقط‌بندی اپیکال
ارزش نسبی در بررسی بعد پاکیون‌ها در ناحیه خط وسط فک‌ها	نقط‌بندی اپیکال
روی هم انتقال تصویر در ناحیه قز خی مخ وسط	نقط‌بندی اپیکال

| لزالت سفالومتری | نقط‌بندی اپیکال |

حذف تصویر ساختمان‌های مجاور	نقط‌بندی اپیکال
امکان مشاهده و اندازه‌گیری بعد پاکیون‌ها استخوان فک	نقط‌بندی اپیکال
بزرگ‌سایه‌ی مشخص و همگن	نقط‌بندی اپیکال
نیاز به آموزش و تمرین زیاد برای تفسیر تصاویر	نقط‌بندی اپیکال

وجه محدوده تصویر	نقط‌بندی اپیکال
حذف تصویر ساختمان‌های مجاور	نقط‌بندی اپیکال
امکان بازرسی تصویر در مقطع گوناگون و ساخت تصاویر به‌عنوان	نقط‌بندی اپیکال
حذف بزرگ‌سایه‌ی به‌طور کامل و ارائه تصویری با اندازه‌وایع	نقط‌بندی اپیکال
امکان ارزیابی تراکم استخوان	نقط‌بندی اپیکال
امکان استفاده از تصویر برای ساخت مدل‌های سه بعدی فک و	نقط‌بندی اپیکال
کاربرد در ترم الافزایی	نقط‌بندی اپیکال

دسترسی دندانپزشکی سی‌تی اسکن	نقط‌بندی اپیکال
کاهش زیبایی در میدان کیفیت بی‌پرتوگرافی معمولی	نقط‌بندی اپیکال
ناحیه‌بندی در ساخت مدل فک به دلیل نویز سی‌تی اسکن	نقط‌بندی اپیکال
عدم آرایه تصویر رضایت بخش از نواحی نرم	نقط‌بندی اپیکال

CBCT	نقط‌بندی اپیکال
کاهش زیبایی در میدان کیفیت بی‌پرتوگرافی معمولی	نقط‌بندی اپیکال
ناخالصی در ساخت مدل فک به دلیل نویز سی‌تی اسکن	نقط‌بندی اپیکال
عدم آرایه تصویر رضایت بخش از نواحی نرم	نقط‌بندی اپیکال
CBCT	نقط‌بندی اپیکال
 مجله دندانپزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران (دوره ۲۲، شماره ۱، بهار ۱۳۸۸)

تا با استفاده از روش‌های محاسباتی پیچیده، داده‌های بدست‌آمده از تصاویر آگزارال، تجزیه و تحلیل و بازسازی تصاویر در بل‌های سازیتال و کرئال نیز امکان‌پذیر شود. مکانیسمی که از آن تحت شرایط

یابد می‌شود (۴۲). در اکثر ادامه اطلاعات به صورت

دجینال بزودی موقع شد تا روش‌های خاصی برای کردن

هرچه بیشتر این اطلاعات معرفی شود. خروجی دجینال سیستم، قابل استفاده در نرم‌افزارهای جدیدتر بود. نرم‌افزارهای که هدف از طراحی

آنها استفاده از تصاویر برای ارائه طرح درمان بود. (۷۲). بدون ترتیب

فناوری خاصی که به آن

وجود نداشتند. در طول سال‌های ۱۹۹۰ تا ۲۰۰۰، میان‌های نرم‌افزارهای

تعاملی (interactive) و سرعت پیشرفته کردن و در نهایت با ادامه (Rapid prototyping

این تکنولوژی) فناوری براي اولین بار امکان

طراحی و ساخت مدل فک که منظور ازه هرچه دقیقتر طرح درمان

ایمیلنت فراهم گردید (۷۲) (شکل ۴).

شکل ۳: سی‌تی اسکن، در دستگاه‌های قدمی تر تصاویر مقاطع به

صورت مقطعی تهیه می‌شود. بین‌های‌های تصویری فواصل ۱۰ تا

۲۰ میلی‌متر وجود داشته که تصویری از آن به دست‌آمد می‌باشد.

از سال ۱۹۸۹ به بعد نسل گذشته‌تری تی اسکن به نام

Helical CBCT

در سال ۲۰۰۱ میلادی با کاربرد نسل جدیدی از دستگاه‌های

CBCT (Cone-beam CT) ملاحظه شد. سابقه

یابد می‌شود (۴۲، ۷۲). لیا به دلیل این کلمه باید به

قبل بررسی کرده باشد. تی اسکن و نمونه‌های دقیق و کامپیوتری پیشرفته عرضه

آن به بارز تا سال ۲۰۰۱ میلادی به موجب اتفاق (۷۲) (شکل ۴).

شکل ۴: میکوسکوگرافی تکنیک تصویر در سی‌تی اسکن و

به شکل دسته‌پرتو و آراپسی حس گرها توجه کنید.

CBCT (Cone-beam CT) ملاحظه شد. سابقه

یابد می‌شود (۴۲، ۷۲). لیا به دلیل این کلمه باید به

قبل بررسی کرده باشد. تی اسکن و نمونه‌های دقیق و کامپیوتری پیشرفته عرضه

آن به بارز تا سال ۲۰۰۱ میلادی به موجب اتفاق (۷۲) (شکل ۴).
تصویربرداری در دندانپزشکی ایمپلنت، ضرورت استفاده از روش‌های جدید برای تغییر محل ایمپلنت

امواج ورود صوت از سطوح بینی به فاز تصورسازی می‌کند، به دلیل
جذب زدای امواج در پاتفاهای سخت و عدم تشکیل پژوهک مانند در
این خصوص کاربردی جداسازی ندارد (۳۲).

بزرگ‌ترین موانع ایجادکننده‌های تصوربرداری در ارتباط با
درمان ایمپلنت عمدتاً میتی بر این شاخص ایکس هستند. این روش‌ها را
می‌توان به دو دسته کلی تقسیم‌بندی به
- روش‌های رادیوگرافی ساده (Plain radiography)
- روش‌های تومرگرافیک

کوچک‌ترین دستگاه و قابلیت نصب در کلینیک‌هایی با فضای محدود
امکان‌آوری آنها را به ویژه این اندکی در مقیاس بسیار انداز
سی تی ایمپلنت می‌تواند بخش آن‌اندازی روشن‌تر برای فناوری
CBCT باشد (۳۲).

علاقه بر این انداز آمیز روش‌های تصوربرداری به سه بعدی و نیز
وجود دارد که در آنها از این چکاوی استفاده نمی‌شود.
متوافقات این روش‌ها تصوربرداری با زرتس نگاری مغناطیسی
و اولترا سونوگرافی (Magnetic resonance imaging, MRI) هستند. روش تصوربرداری که کمک ایجاد حالت ارتقاء همتوا در
مولکول‌ها جسم از طریق امواج مغناطیسی یا که اصل آن قطع
خواندن می‌شود، اولین بار در سال ۱۹۷۳ و با استفاده از فناوری دیگری MRی با استفاده می‌شود. به دست آمده CT روش‌های نوری NMR (با

با استفاده از MRI) نمی‌توان یاد نمود که با این ترکیب مولکول‌ها در شیمی آلی به کار می‌رود. ممکن است این روش
نسبت به CT حذف پرتوهای بیشتر است. اینکه امکان ایجاد
پرای چهار فازی (Metal artifacts) در CT وجود دارد MRI
(۳۲). لیاولین بر توسط Taylor MRI
امکان متاسفانه چون اساس تصوربرداری مورد اعضا بر حضور انتهای
هیدرژن آزاد است و در این سیستم خسته و استخوانی دارای
هیدرژن آزاد کمی هستند، می‌توان از MRI برای مشاهده دقیقه
گونه بافت‌ها استفاده کرد (۳۳). به علاوه زمان تصوربرداری در مقیاس
CT با نسبت طولانی است (۳۳). سونوگرافی نیز که براساس پرتوک

شکل ۵ - مدل فک و تنبیه که با استفاده از داده های تصاویر سی تی
اسکن تهیه شده است.

فیل که و تنبیه که با استفاده از داده‌های تصاویر سی‌تی است.
اسکن تهیه شده است.
جدول ۲- دوز موتر در روش‌های تصویربرداری مورد استفاده در دمان‌های ایمپلنت (برگرفته از منابع)

<table>
<thead>
<tr>
<th>نوع رادیوگرافی</th>
<th>دوز موتر بر حسب میلی سیورت</th>
</tr>
</thead>
<tbody>
<tr>
<td>توموگرافی عادی (هر مقطع)</td>
<td>۴۰۰-۲۰۰۰ mSv</td>
</tr>
<tr>
<td>توموگرافی عادی (هر مقطع) فک بالا</td>
<td>۴۰۰-۳۰۰۰ mSv</td>
</tr>
<tr>
<td>توموگرافی عادی (هر مقطع) فک پایین</td>
<td>۴۰۰-۳۰۰۰ mSv</td>
</tr>
<tr>
<td>ورزش سطح‌پوش</td>
<td>۴۰۰-۳۰۰۰ mSv</td>
</tr>
<tr>
<td>ورزش سطح‌پوش فک بالا</td>
<td>۴۰۰-۳۰۰۰ mSv</td>
</tr>
<tr>
<td>ورزش سطح‌پوش فک پایین</td>
<td>۴۰۰-۳۰۰۰ mSv</td>
</tr>
<tr>
<td>رادیوگرافی داخل دهانی</td>
<td>۱۰۰-۱۵۰ mSv</td>
</tr>
<tr>
<td>فک بالا (هر مقطع)</td>
<td>۱۰۰-۱۵۰ mSv</td>
</tr>
<tr>
<td>فک پایین (هر مقطع)</td>
<td>۱۰۰-۱۵۰ mSv</td>
</tr>
</tbody>
</table>

جدول ۳- طرح مور و میر ناشی از پتروگری در روش‌های تصویربرداری مورد استفاده در دمان‌های ایمپلنت (برگرفته از منابع)

<table>
<thead>
<tr>
<th>ریسک مرگ و میر</th>
<th>نوع رادیوگرافی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰۰۰۰</td>
<td>تواحی قناعی</td>
</tr>
<tr>
<td>۱۵۰۰۰۰۰</td>
<td>ناحیه پربهور</td>
</tr>
<tr>
<td>۱۳۵۰۰۰۰</td>
<td>ناحیه مولع</td>
</tr>
<tr>
<td>۱۴۷۰۰۰۰</td>
<td>بررسی کامل دهان با ۱۲ فیلم</td>
</tr>
<tr>
<td>۱۵۸۰۰۰۰</td>
<td>پاتورامیک</td>
</tr>
<tr>
<td>۱۵۲۰۰۰۰</td>
<td>یک عالی فیلم</td>
</tr>
<tr>
<td>۱۵۸۰۰۰۰</td>
<td>سی تی اسکن معمولی (هر فک)</td>
</tr>
<tr>
<td>۱۶۴۰۰۰۰</td>
<td>سی تی اسکن استریال</td>
</tr>
<tr>
<td>۱۶۰۰۰۰۰</td>
<td>فک بالا (هر مقطع)</td>
</tr>
<tr>
<td>۱۵۰۰۰۰۰</td>
<td>فک پایین (هر مقطع)</td>
</tr>
</tbody>
</table>

گزارشات ۸۵% اشعه دریافتی را ناشی از اشعه زمین‌های طبیعی (Natural background radiation) و نیم‌بر (انوار روشن‌های پرتوگرایی پزشکی) تشکیل می‌دهد. افزایش میزان خطر اشعه می‌تواند در دستگاه‌هایی مثل CBCT و CT یک عالی فیلم و گونه‌های مخصوص داشته باشد. در روشهای پرتوگرایی پزشکی، دوز موتر می‌تواند تا ۳ mSv تا ۱۰۰ mSv تغییر کند. این امکان پیش‌بینی می‌شود که در بررسی‌های پزشکی به‌طور متوسط هر سال و در پزشکی‌های فاقد تمرین ممکن است دوز موتر را باید به‌طور متوسط تا ۶۰۰ mSv تغییر دهیم.

در دقت تکنیک‌های و تغییرات ابعادی

یکی از نکات مهم در ارزیابی هر روش تصویربرداری تغییرات بیشتری را در تکنیک‌های و تغییرات ابعادی است. تابع شده است که همه روشهای پرتوگرایی با گزینه‌ای که تحت نام CT خوانده می‌شود، دچار مقادیری از تغییر شکل و نسبت (۲۷-۳۲) به میان می‌رسد که درصد زیادی از تغییرات بیشتری را در خود دارند. در پرتوگرایی‌های پزشکی، ممکن است باید به‌طور متوسط به دقت صرفه‌جویی که در تکنیک‌های پزشکی استفاده می‌شود (۲۰-۳۰).
روش نیمساز امیلنت‌ها در بدنه بروز آنچه که تغییر شکل عمودی خود را به دلیل تغییر شکل در انواع دستگاه‌های رادیولوگی پالژوماکی به بیش از ۳۰% رسته که به بیشتر در حال شکل قرار داشته باشد. بزرگ‌ترین بخش از روی تصویر رادیولوگی پالژوماکی است که محققین نظر کرده‌اند. و همکاران استفاده از هر نوع اندازه‌گیری Lastar بر روی رادیولوگی پالژوماکی را مورد تردید قرار داده‌اند و به یک‌گروپ تحقیق در دو زیرگروه ماله استفاده که Tجسمی طبیعی مقایسه کرده‌اند. چیزی که نتیجه تغییر شکل در این مطالعات به دست آمده، در حالی که نتایج نشان داده‌است این محققين نتایج نشان داده‌اند که از LNZ الکول و محکمین در این شرایط رضایتگا می‌دهند. مطالعه در حین رادیولوگی، با توجه به در حال بررسی و همکاران در حین مطالعه در استخوان‌های با رستگی نهایی بروز رخ را در هر نوع استفاده با مطالعه در استخوان‌های با رضایتگایی، با استفاده از روتاخ در شرایط نهایی نتایج نشان داده‌اند که این Tجسمی طبیعی مقایسه کرده‌اند. چیزی که نتیجه تغییر شکل در این

متون دیگر

Goaz

متون دیگر

Goaz
ارایه تصویر سه بعدی و تعیین موقعیت ساختارهای اناتومیک
در سال‌های اخیر ساخت تصاویر سه بعدی برای درک اناتومی بدنش جایگاه و ابعاد آن را ساده‌تر کرده است. به کمک فناوری CAD/CAM ممکن است تعیین موقعیت به‌دست آید و این اطلاعات به‌عنوان جراحان قرار جابه‌جویی از موارد ساخت تصاویر سه بعدی مدل‌های نیز تهیه شده و از اینرو جراحان قرار
در کنار طبیعی این اطلاعات همراه با دقت بالایی از موارد ساخت تصاویر سه بعدی تشکیل می‌دهند.

بحث و نتیجه‌گیری
در روند صحیح انتخاب رادیوگرافی در بیماران نیازمند به ایمپلنت باید از تکنیک‌های تصویربرداری سه‌بعدی سود ببریم. از اینرو، فناوری CT به عنوان یکی از روش‌های تصویربرداری با دقت بالا و در انتخاب بهترین موقعیت مورد استفاده قرار می‌گیرد. با توجه به اینکه CT می‌تواند در تشخیص درد و گرفتگی از موثر بوده و این امر می‌تواند در تولید نماد ایمپلنت به عنوان یکی از روش‌های تعیین ترمیم استخوان کمک کند.

جدول 4- راهنمای انتخاب روش‌های تصویربرداری پیش از دمکره‌های ایمپلنت

<table>
<thead>
<tr>
<th>روش‌های تصویربرداری کمکی</th>
<th>مواد هدیار</th>
<th>محل قرارگیری ایمپلنت</th>
<th>تعداد ایمپلنت</th>
<th>فرمول های</th>
<th>قطعات فک‌پایین</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ترکیب شده استخوان</td>
<td>ماسه نیکل عنه کاپوسلا</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل ترکیب شده استخوان</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ادرایه فراگرفته</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درونحل</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
تصویربرداری در دندانپزشکی ایمپلنت، ضرورت استفاده از روش‌های جدید برای تعیین محل ایمپلنت

شده با دندان‌های طبیعی از جمله عواملی هستند که اعمال دقیق نظر کافی در تعیین صحیح محل قرار گرفتن ایمپلنت را طیل می‌کند. اگر به یک طرف سنتی و سه‌بعدی ایمپلنت نقش می‌زند دیگر نگه نمی‌ماند. این وارد نسبت‌های، ضرورت به‌دست آوردن برخی از موارد که در اینجا آورده می‌شود با توجه به این مواد انتخاب می‌شود. این روش به برخی از تحقیقات ایمپلنتولوژی و تهیه شده‌اند.

3- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St.Louis, Missouri 63110. Retrieved from: http://wuerlim.wustl.edu/PROJS/Dental/3dd_sCT.html

Network, retrieved from: http://www.prin.ir/css/common.css

46- Reynolds A. Dental radiation risks. IRISH DENTIST 2001;35-42.

57- Rosenfeld A, Mccall J.A. The use of interactive computed tomography can predict the esthetic and functional demands of implant-supported prostheses. Compendium 1996:17(12)